Bronze Level

Mark Scheme 4

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Difficulty Level	Bronze
Booklet	Mark Scheme 4

Time Allowed:	51 minutes
Score:	/42
Percentage:	/100

Grade Boundaries:

9	8	7	6	5	4	3	2	1
>95%	85%	75%	65%	55%	45%	35%	25%	<25%

Question Number	Working	Answer	Mark	Notes
1. ("	12 x 18) + (8 x 16.5) (=348) 348" ÷ 20	17.4	4	M2M1 for 12×18 (=216) or 8×16.5 (=132)M1dep on at least 1 previous M1A117.4AltRatio methodM1: $12:8 = 3:2$ or $6:4$ M1: 18×3 and 16.5×2 or 18×6 and 16.5×4 M1: $(18 \times 3 + 16.5 \times 2) \div 5$ or $(18 \times 6 + 16.5 \times 4) \div 10$ A1: 17.4 AltProportion methodM1 60% boys and 40% girls stated or impliedM2 $(0.6 \times 18) + (0.4 \times 16.5) (= 10.8 + 6.6)$ M1 for 0.6×18 or 0.4×16.5 A1 17.4 SC B1 for 17.1 (from $\{(8 \times 18) + (12 \times 16.5)\} \div 20)$
				Total 4 marks

2. (a) (i)			30	1	B1	
(ii)			21	1	B1	
(b)		Horizontal line f	From (1400,39) to (1600,39)		B1	
		Line fro	m ("1600", 39) to (1715, 0)	2	B1ft	ft if line finishes at $(1715, 0) (\pm 5 \text{ mins})$ and starts at
						height 39km
(c)			13 25to 1330		B1	Accept 1 25 <u>pm</u> to 1 30 <u>pm</u>
			1625 to 1630	2	B1	Accept 4 25 <u>pm</u> to 4 30 <u>pm</u>
						or ft if line finishes at $(1715, 0) (\pm 5 \text{ mins})$ and starts
						at height 39 km
(d)	$39 \div 1.25$ or $(39 \div 75 \times 60)$)			M2	M1 for 39 ÷ 1.15 (=33.9) or 39 ÷ 75 (= 0.52)
			31.2	3	A1	
						Total 9 marks

3. (a)	reflection in line x	= 1	B1 B1	must be a single transformation of for $x = 1$
	(rotation (90° {anticlockwise}) oe) about (1,	1) 2	B1 B1	must be a single transformation
(b)	flag at $(4, -1)(5, -1)(6, -1)(5, -1$	2) 2	B2	B1 for correct orientation of flag, or triangle
	or triangle at $(5, -1)(6, -1)(5, -1$	2)		but in wrong position
				Total 4 marks

4. (a)	4/5 x 15/7			M1 or $12a/15a \div 7a/15a$ (denominators the same and a
				multiple of 15)
		12/7 oe	2	A1 dep on M1. Improper fraction equivalent to 1 5/7
				required produced directly from M1
(b)	21/4 - 5/3			M1 Correct improper fractions
	63a/12a - 20a/12a			M1 Correct fractions with a common denominator a
		43/12 oe	3	multiple of 12
				A1 dep on M2 Improper fraction required.
				Alt method
				M1 (5) $3/12 - (1) 8/12$ (i.e. can ignore integer parts)
				M1 – 5/12
				A1 Improper fraction required or $4 - 5/12$. Ans dep on M2.
				Alt method
				M1 (4) $5/4 - (1) 2/3$ (i.e. can ignore integer parts)
				M1 (4) $15/12 - (1) 8/12$ (i.e. can ignore integer parts)
				A1 $(3 +) 7/12$ or improper fraction Ans dep on M2
				NB: Follow one strand that gives most marks.
				Total 5 marks
5.	tan 72 or tan 18 selected			M1
	(<i>MN</i> =) 34 x tan 72			M1 or $(MN =)$ 34 ÷ tan 18

5.	(MN=) 34 x tan 72			M1 M1	or (<i>MN</i> =) 34 ÷ tan 18	
		105	3	A1	104.64 awrt 105	
				Alt	Sine rule method	
				M1	34/sin 18 = "MN"/sin 72	
				M1	(<i>MN</i> =) (34 x sin 72) ÷ sin 18	
		105		A1	104.64 awrt 105	
						Total 3 marks

Question Number	Working	Answer		Mark	Not	es
Itulibei						
6.	A product of 3 or more factors of 300 of which at least 2 are different primes (i.e. from 2, 3 or 5)				M1	e.g 2 x 3 x 50 (must multiply to 300) could be implied from a factor tree or division ladder
	All 5 correct prime factors & no extras (ignore 1's)	2, 2, 3, 5, 5 (w	with/without 1's) or $2^2 \times 3 \times 5^2 \times 1$ or $2^2 + 3 + 5^2$		M1	could be implied from a factor tree or division ladder 2 x 2 \equiv 2 ² 5 x 5 \equiv 5 ²
			2 x 2 x 3 x 5 x 5	3	A1	any order, do not accept inclusion of 1's accept • in place of x
	· · · · · · · · · · · · · · · · · · ·					Total 3 marks
гг			1			
7.	(19 x1)(=19) + (8 x3)(=24) + (3 x5)(=15) +	+ (1x 9) (=9)			M2	for freq x all correct midpoint values correctly evaluated (condone omission of 4 th interval) {do not have to see intention to add}
					if not	M2 then M1 for freq x consistent point in each interval
			67	3	Δ1	or M1 for 1 error in list of 19, 24, 15, (0) , 9 iswif 67 calculated correctly (2.16, $-M2A1$)
				5	ΠΙ	Total 3 marks

8. (a)	set B separate to A, set C within A	2	B1 B1	Set C has to be a unique set
(b)	outer ring between A and C shaded	1	B1ft	Completely outside of C and within all of A.
				Set C has to be a unique set
				Total 3 marks

Q	Working	Answer	Mark	Notes
9. (a)	1 - (0.18 + 0.2 + 0.23 + 0.22)			M1 1-0.83
		0.17	2	Al
(b)	40 x 0.2			MI
-		8	2	A1 8 out of $40 = M1A1 8/40 = M1A0$
				Total 4 marks
10 (1)				
10. (1)		$2x + 2(x+2) = 2 \times 2x + 2 \times 4x$	2	B2 Must be an equation based on perimeter
		or $4x + 4 = 12x$		or semi-perimeter with x s on both sides of
		or $x + (x+2) = 2x + 4x$		equation
		or $2x + 2 = 6x$		
				If not D2 than D1 for $(2n + 2(n+2))$ or $(2n + 2(n+2))$
				If not B2 then B1 for $\{2x + 2(x+2)\}$ of $\{2x + 2(x+2)\}$
				2x + 2x + 4x or $(4x + 4)$ or $12x$ is correct perimeter of A
				or $\{4x + 4\}$ of $12x$ i.e context perimeter of A
				01 D or $(x + (x+2))$ or $(2x + 4x)$
				or $\{2x \pm 2\}$ or $\{x \pm (x \pm 2)\}$ of $\{2x \pm 4x\}$
				of A or B
10(ii)				
10(11)	r + 4 = 12r or			
	2r + 2 = 6r 4 = 8r or			M1 One step from co
	2x + 2 0x + - 0x 01 $2 = 4r$			one step nom co
		0.5	2	A1 Allow numerical methods. Correct answer
		0.5	-	only = M1A1
				Total 4 marks
				i vial 7 Illal KS