Gold Level

Model Answers 2

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Difficulty Level	Gold
Booklet	Model Answers 2

Time Allowed: 58 minutes

Score: / 48

Percentage: /100

- 1 Clare buys some shares for \$50x. Later, she sells the shares for \$(600 + 5x). She makes a profit of x%
 - (a) Show that $x^2 + 90x 1200 = 0$

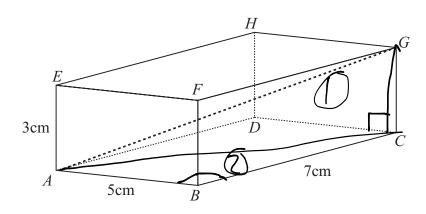
$$\frac{)C = (600 + 5x) - 5000}{5000} = 100(600 + 5x - 500)$$

$$-50, \text{ collect terms} > 2(600-45x) = 27$$

$$2(600-45x) = 27$$

$$2(600-45x) = 27$$

(b) Solve $x^2 + 90x - 1200 = 0$ Find the value of x correct to 3 significant figures.

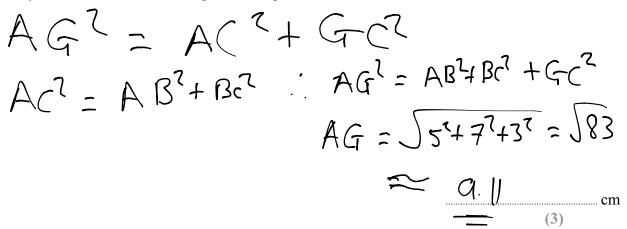

$$y = -b \pm \sqrt{b^2 - 4ac}$$

$$2(-100)$$

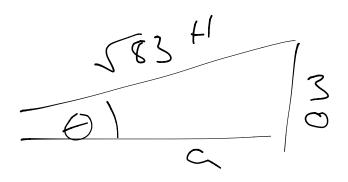
$$x = \underbrace{11 \cdot 3}_{(3)}$$

2

Diagram **NOT** accurately drawn


The diagram shows a cuboid ABCDEFGH.

AB = 5cm


BC = 7cm

AE = 3cm

(a) Calculate the length of AG. Give your answer correct to 3 significant figures.

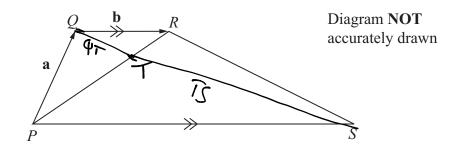
(b) Calculate the size of the angle between AG and the plane ABCD. Give your answer correct to 1 decimal place.

$$Sin (E) = \frac{3}{\sqrt{83}} = 10.5$$

(9.7

3 Express $\sqrt{8+} \sqrt{08}$ in the form $k \sqrt{6}$ where k is a surd.

$$\sqrt{48+1708} = \sqrt{6} \times 8 + \sqrt{6} \times 9 \times 2$$


$$= \sqrt{6} \left(\sqrt{8} + \sqrt{9} \times 2 \right)$$

$$= (2\sqrt{2} + 3\sqrt{2}) \sqrt{6}$$

$$= (5\sqrt{2}) \sqrt{6} : \lambda = 5\sqrt{7} = 5\sqrt{2}$$

(Total for Question is 3 marks)

4

The diagram shows a trapezium PQRS.

PS is parallel to QR.

$$PS = 4QR$$
.

$$\overrightarrow{PQ} = \mathbf{a}$$
 $\overrightarrow{QR} = \mathbf{b}$

(a) Find, in terms of a and/or b,

(ii)
$$\overrightarrow{PR}$$

$$\alpha + b$$

(iii)
$$\overrightarrow{RS}$$
.

The point T lies on the line PR such that PT : TR = 4 : 1

(b) Given that $\overrightarrow{TS} = k \overrightarrow{QT}$, find the value of k.

$$TS = \frac{1}{5}(a+b) + 3b-a$$

$$QT = -a + \frac{4}{5}(a+b)$$

$$QT = -a + \frac{4}{5}(a+b)$$

route QTS
$$TS = 4 QT$$

$$h = 4$$

$$k = 4$$
(3)

->
$$\overrightarrow{TS} = \frac{4}{5}(-\alpha + 4h)$$
, $\overrightarrow{QT} = \frac{1}{5}(-\alpha + 4h)$

(Total for Question is 6 marks)

- 5 A bag contains 60 beads. *x* of the beads are red and the rest are green. Altaaf takes at random a bead from the bag.
 - (a) State, in terms of *x*, the probability that Altaaf takes a red bead.

X/60

x/60 (1)

Altaaf puts his bead back in the bag. Another 20 **red** beads are added to those in the bag. The probability that Altaaf takes a red bead is now doubled.

(b) (i) Use this information to write down an equation in x and show that your equation can be expressed as 8x = 3(x + 20)

new probability =
$$2 (x/60) = x/30$$

Which is equal too $(x+20)/(60+20)$

$$x/30 = (x+20)/80$$

 $160x = 60(x+20)$

$$8x = 3(x+20)$$

(ii) Solve 8x = 3(x + 20)Show your working clearly.

Expand:
$$8x = 3x + 60$$

$$5x = 60$$


$$0x = 00$$

$$x = 12$$

$$x = \frac{12}{(5)}$$

(Total for Question is 6 marks)

6

The diagram shows a rectangular photo frame of area $A \text{ cm}^2$.

The width of the photo frame is x cm.

The height of the photo frame is y cm.

The perimeter of the photo frame is 72 cm.

(a) Show that $A = 36x - x^2$

Sum of the sides = the perimiter

$$2x + 2y = 72$$

$$X + Y = 36$$

$$Area = X \times Y$$

Area =
$$x(36-x)$$

$$A = 36x - x$$

(b) Find $\frac{dA}{dx}$

(3)

36 -2x

(c) Find the maximum value of A.

Maximum occurs when differential = zero

$$36 = 2x$$

$$18 = x$$

$$A = \frac{18=x}{(3)}$$

(Total for Question is 8 marks)

7 Two small magnets attract each other with a force, *F* newtons. *F* is inversely proportional to the square of the distance, *d* cm, between them.

When d = 2, F = 12

(a) Express F in terms of d.

$$F \propto \frac{1}{d^2}$$

$$F = \frac{k}{d^2}$$

$$12 = \frac{k}{2^2} = \frac{k}{4}$$

$$F = \frac{4-8}{d^2}$$

(b) Calculate the value of F when d = 5

$$F = \frac{4.8}{d^2}$$

$$F = \frac{4.8}{5^2} = \frac{4.8}{25} = 1.42$$

$$F = \frac{1.92}{(1)}$$

(c) Calculate the value of d when F = 3

$$F = \frac{4.8}{d^2}$$

$$d^2 = \frac{4.8}{3}$$

$$d = \sqrt{\frac{4-8}{3}} = \sqrt{16} = \frac{4}{4}$$
 Distance so positive

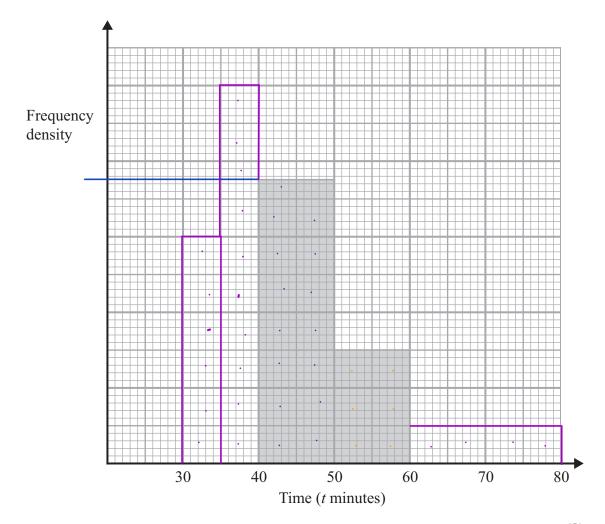
$$d = \frac{4}{2}$$

(Total for Question is 6 marks)

8 The incomplete table shows information about the times, in minutes, that runners took to complete a race.

Time (t minutes)	30 ≤ <i>t</i> < 35	$35 \leqslant t < 40$	40 ≤ <i>t</i> < 50	$50 \leqslant t < 60$	60 ≤ <i>t</i> < 80
Number of runners	12	20	30	12	16

(a) Use the histogram to calculate the number of runners who took between 40 and 50 minutes to complete the race.


15 large squares

So
$$15 \times 2 = 30$$

30

(2)

(b) Complete the histogram for the remaining results.

Runners who achieved a time between 37 and 48 minutes to complete the race were each awarded a silver medal.

(c) Calculate an estimate of the number of runners awarded silver medals.

3 minutes below 40, 8 minutes in 40-50

Frequency x proportion of the class width $20 \times (3/5)$ $30 \times 8/10$

summed they give an estimation of 36

(2)

(Total for Question is 6 marks)

9 Show that the recurring decimal $0.17 = \frac{8}{45}$

$$X = 0.17777777$$

 $10x = 0.177777$

Subtract x from 10 x

$$9x = 1.7777 - 0.17777$$

 $9x = 1.6$
 $X = 1.6/9 = 16/90 = 8/45$