Gold Level

Model Answers 3

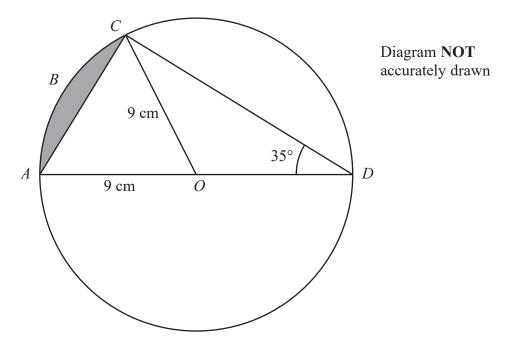
Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Difficulty Level	Gold
Booklet	Model Answers 3

Time Allowed: 60 minutes

Score: /50

Percentage: /100

1



AOD is a diameter of a circle, with centre O and radius 9 cm.

ABC is an arc of the circle.

AC is a chord.

Angle $ADC = 35^{\circ}$

Calculate the area of the shaded segment.

Give your answer correct to 3 significant figures.

$$AOC = 2 \times 35 = 70$$

Area of the triangle AOC = 0.5 a b $sin(c) = 0.5 \times 9 \times 9 \times sin(70) = 38.05...$

Area of sector =
$$\theta/360 \times \pi \times r_2$$
 = $(70/360)\times\pi\times9\times9 = 49.48...$

Area of sector - area of the triangle = shaded area = 49.48... - 39.05 = 11.4

11.4 cm²

(Total for Question is 6 marks)

2 Show that $\frac{\sqrt{3} + \sqrt{27}}{\sqrt{2}}$ can be expressed in the form \sqrt{k} where k is an integer.

State the value of k.

Multiply top and bottom by 2

$$\frac{\sqrt{3} + \sqrt{27}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}(\sqrt{3} + \sqrt{27})}{2}$$

$$\frac{(\sqrt{2})(\sqrt{3}) + (\sqrt{9} \times 3 \times \sqrt{2})}{2} = \frac{\sqrt{6} + 3\sqrt{6}}{2}$$

$$\frac{4\sqrt{6}}{2} = 2\sqrt{6} = \sqrt{4} \times 6 = \sqrt{24}$$

(Total for Question is 3 marks)

3 Simplify fully
$$\frac{4}{x} + \frac{3}{2-x}$$

Multiply top and bottom of first fraction by 2-x and second by x to ensure they have a common denominator.

$$\frac{2 - x}{z - x} \left(\frac{1}{x} \right) + \frac{x}{x} \left(\frac{3}{2 - x} \right)$$

$$\frac{\frac{1}{4} \left(2 - x \right)}{x \left(2 - x \right)} + \frac{3x}{x \left(2 - x \right)}$$

$$\frac{8 - 4x}{x \left(2 - x \right)} + \frac{3x}{x \left(2 - x \right)}$$

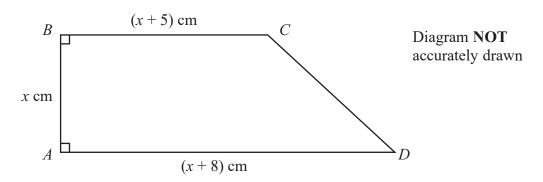
$$\frac{\left(8 - 4x \right) + \left(3x \right)}{x \left(2 - x \right)}$$

$$\frac{\left(8 - 4x \right) + \left(3x \right)}{x \left(2 - x \right)}$$

$$\frac{8 - x}{x \left(2 - x \right)}$$

$$\frac{g-x}{\chi(2-x)}$$

4



The diagram shows a trapezium ABCD with AD parallel to BC. AB = x cm, BC = (x + 5) cm and AD = (x + 8) cm. The area of the trapezium is 42 cm².

(a) Show that $2x^2 + 13x - 84 = 0$

Area of a trapezium is 0.5(a+b)h

Area =0.5 (
$$(x+5) + (x+8)$$
)(x) =42
0.5($2x + 13$) x = 42
($2x + 13$)x = 84

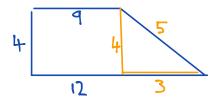
$$2x^{2} + 13x - 84 = 0$$

(2)

(b) Calculate the perimeter of the trapezium.

$$2x + 13x - 84 = 0$$

Factorise
 $(2x + 21)(x-4) = 0$
 $X = 4, -10.5$
X must = 4



Using Pythagoras: Total perimeter
$$3^2 + 4^2 = CD^2$$
 $= 5 + 12 + 9 + 4 = 30$ $CD = \sqrt{25}$ $CD = 5$

5 The grouped frequency table gives information about the ages of 200 elephants.

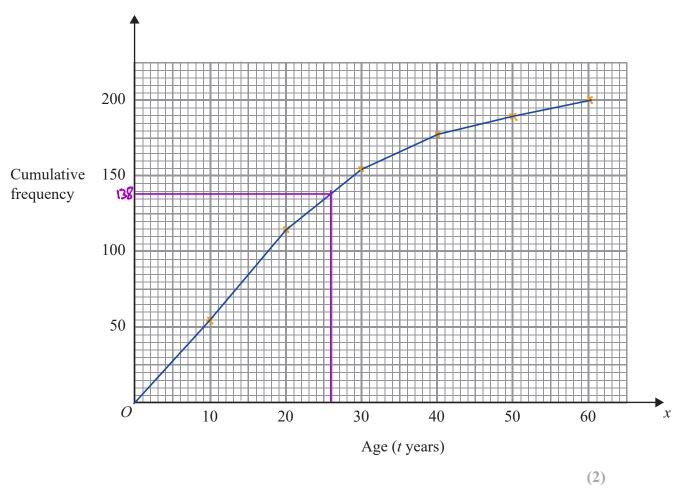
Age (t years)	Frequency
$0 < t \leqslant 10$	55
$10 < t \leqslant 20$	60
$20 < t \leqslant 30$	40
$30 < t \leqslant 40$	22
$40 < t \leqslant 50$	13
$50 < t \leqslant 60$	10

(a) Complete the cumulative frequency table.

Age (t years)	Cumulative frequency
$0 < t \leqslant 10$	55
$0 < t \leqslant 20$	115
$0 < t \leqslant 30$	155
$0 < t \leqslant 40$	177
$0 < t \leqslant 50$	190
$0 < t \leqslant 60$	200

(1)

(b) On the grid, draw a cumulative frequency graph for your table.

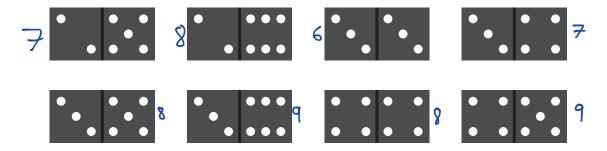


(c) Use the graph to find an estimate for the number of elephants with ages of more than 26 years.

62	
(2)	

(Total for Question is 5 marks)

6 Here are 8 dominoes.



The 8 dominoes are put in a bag.

Riaz takes at random a domino from the bag.

(a) Find the probability that he takes a domino with a total of 8 spots or a domino with a total of 9 spots.

Two dominos have a total of 9 spots 2/8 dominos

3 dominos have a total of 8 spots 3/8

5/8

Sum = 2/8 + 3/8 = 5/8

Helima takes at random 2 dominoes from the bag of 8 dominoes without replacement.

- (b) Work out the probability that
 - (i) the total number of spots on the two dominoes is 18

Only possibility for a sum of 18 is 9 the 9 dots.

$$2/8 \times 1/7 = 2/56$$

2/56

(ii) the total number of spots on the two dominoes is 17

Possible combinations that lead to a total of 17: 9,8 & 8,9

$$2/8 \times 3/7 + 3/8 \times 2/7 = 12/56$$

12/56

(Total for Question is 7 marks)

$$f(x) = \sqrt{x - 6}$$

(a) Find
$$f(10)$$

$$\int_{0}^{10} |x|^{2} dx = 2$$

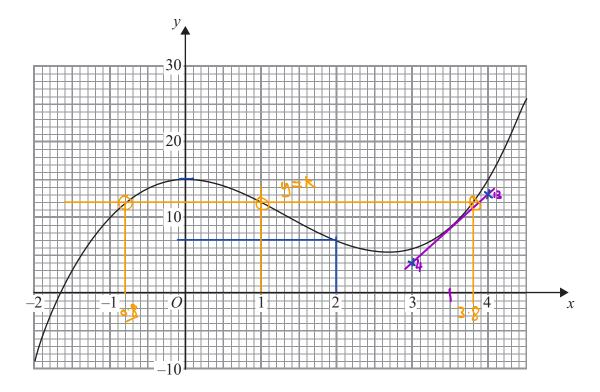
2

(b) State which values of x must be excluded from a domain of f

Any value of x less than 6

X26

The diagram shows part of the graph of y = g(x)



(c) Find g(2)
$$y = g(2) \quad \therefore x = 2$$

$$y = 7$$

(1)

(d) Find fg(0)

$$g(0) = 15$$

 $f(g(0)) = f(15) = \sqrt{15-6} = 3$

(2)

(e) One of the solutions of g(x) = k, where k is a number, is x = 1

Find the other solutions.

Give your answers correct to 1 decimal place.

-0.8,3.8

(f) Find an estimate for the gradient of the curve at the point where x = 3.5 Show your working clearly.

$$\frac{\text{rise}}{\text{run}} = \frac{13.4}{4.3} = 9$$

(3)

(Total for Question is 12 marks)

8

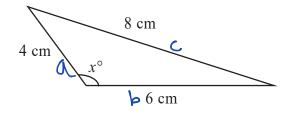


Diagram **NOT** accurately drawn

Calculate the value of *x*.

Give your answer correct to 1 decimal place.

Using the
$$c = b + a - 2abcos(x)$$

$$c^2 = b^2 + a^2 - 2abcos(x)$$

$$8^2 = 6^2 + 4^2 - 2(6)(4)(\cos(x))$$

$$64 - (36 + 16) = -2 (24) \cos(x)$$

 $-(64-52) = 48 \cos(x)$
 $-12/48 = \cos(x)$
 $x = 104.5$

104.5

x =

(Total for Question is 3 marks)

9 A and B are two sets.

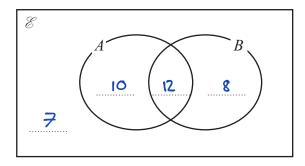
$$n(\mathscr{E}) = 37$$

$$n(A) = 22$$

$$n(A \cap B) = 12$$

$$n(A \cup B) = 30$$

(a) Complete the Venn Diagram to show the **numbers** of elements.



(2)

(b) Find (i) $n(A \cap B')$

10

(ii) $n(A' \cup B')$

(2)

(Total for Question is 4 marks)