Gold Level

Mark Scheme 1

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Difficulty Level	Gold
Booklet	Mark Scheme 1

Time Allowed: 60 minutes
Score: /50

Percentage: /100

Grade Boundaries:

9	8	7	6	5	4	3	2	1
$>85 \%$	75%	65%	55%	45%	35%	25%	15%	$<15 \%$

www.igexams.com

Question Number	Working	Answer	Mark	Notes
1.	1.75 seen		2	M1
			8	

Question Number	Working	Answer	Mark	Notes
2. (a)(i)			114	2
(ii)	eg angle at the centre $=2 \times$ angle at circumference		B1	

www.igexams.com

Question Number	Working	Answer	Mark	Notes
3. (a)	$P=k Q^{3}$		3	M1 for $P=k Q^{3}$ but not for $P=Q^{3}$
	$1350=k \times 3375$			$\begin{array}{ll}\text { M1 } & \text { for } 1350=k \times 3375 \\ & \text { Also award for } 1350=k \times 15^{3}\end{array}$
		$P=0.4 Q^{3}$ oe		A1 $P=0.4 Q^{3}$ oe Award 3 marks if answer is $P=k Q^{3}$ oe but k is evaluated as 0.4 in part (a) or part (b)
(b)		3200	1	B1 ft from " 0.4 " $\times 8000$ except for $\mathrm{k}=1$, if at least $M 1$ scored in (a) (at least $1 \mathrm{~d} . \mathrm{p}$. accuracy in follow through)
				Total 4 marks

Question	Working	Answer	Mark	Notes	
4.	$a^{2} \times 10^{2 n}$		3	M1	
		$\frac{a^{2}}{10} \times 10^{2 n+1}$		A1 for $\frac{a^{2}}{10}$ oe A1 for $\times 10^{2 n+1}$ oe	Award M1 A1 A1 for $\frac{a^{2}}{10} \times 10^{2 n+1}$ even if M1 not awarded. Award M1 A1 A0 if $\frac{a^{2}}{10}$ oe seen. Award M1 A0 A1 if $\times 10^{2 n+1}$ oe seen.
					Total 3 marks

www.igexams.com

Question Number	Working Answer	Mark	Notes
5. (a)	Use of areas to obtain a correct expression for A, which must be correctly punctuated. For example $\begin{aligned} & (A=) 80-2 \times \frac{1}{2} x(10-x)-2 \times \frac{1}{2} x(8-x) \\ & \text { or } 10 \times 8-\frac{1}{2} x(10-x)-\frac{1}{2} x(10-x)-\frac{1}{2} x(8-x)-\frac{1}{2} x(8-x) \\ & \text { or } 80-x(10-x)-x(8-x) \\ & \text { or } 80-2\left(\frac{10 x-x^{2}}{2}\right)-2\left(\frac{8 x-x^{2}}{2}\right) \end{aligned}$	3	B2 B1 for expression for area of triangle or pair of congruent triangles, for example $\begin{aligned} & \frac{1}{2} x(10-x) \text { or } \frac{1}{2} x(8-x) \\ & \text { or } x(10-x) \text { or } x(8-x) \end{aligned}$ Condone omission of brackets for award of B1
	Correct simplification of a correct expression for A to obtain an expression which is equivalent to $2 x^{2}-18 x+80$ For example $(A=) 80-10 x+x^{2}-8 x+x^{2}$ or $80-\left(10 x-x^{2}\right)-\left(8 x-x^{2}\right)$ or $80-\left(5 x-\frac{1}{2} x^{2}\right)-\left(5 x-\frac{1}{2} x^{2}\right)-\left(4 x-\frac{1}{2} x^{2}\right)-\left(4 x-\frac{1}{2} x^{2}\right)$		B1 dep on B2
(b)(i)	$4 x-18$	5	B2 B1 for 2 of 3 terms differentiated correctly
(ii)	$" 4 x-18 "=0$		M1
	4.5 oe		A1 cao
(iii)	eg positive coefficient of x^{2} or U shape or $\frac{\mathrm{d}^{2} A}{\mathrm{dx}}=4$ which >0		B1
			Total 8 marks

www.igexams.com

Question Number	Working	Answer	Mark	Notes	
6.	$x^{2}+(2 x-3)^{2}=2$		6	M1	for correct substitution
	$\begin{aligned} & x^{2}+4 x^{2}-6 x-6 x+9=2 \\ & \text { or } x^{2}+4 x^{2}-12 x+9=2 \end{aligned}$			B1	(indep) for correct expansion of $(2 x-3)^{2}$ even if unsimplified
	$5 x^{2}-12 x+7(=0)$			B1	for correct simplification Condone omission of ' $=0$ '
	$\begin{aligned} & (5 x-7)(x-1)(=0) \\ & \text { or } \frac{12 \pm \sqrt{4}}{10} \text { or } \frac{12}{10} \pm \frac{\sqrt{4}}{10} \\ & \text { or } \frac{6}{5} \pm \frac{1}{5} \end{aligned}$			B1	for correct factorisation or for correct substitution into quadratic formula and correct evaluation of ' $b^{2}-4 a c$ ' or for using square completion correctly as far as indicated
	$x=1 \text { or } x=1 \frac{2}{5}$			A1	for both values of x dep on all preceding marks
		$\begin{array}{r} x=1, y=-1 \\ x=1 \frac{2}{5}, y=-\frac{1}{5} \end{array}$		A1	for complete, correct solutions (need not be paired) dep on all preceding marks No marks for $x=1, y=-1$ with no working
					Total 6 marks

www.igexams.com

Question Number	Working	Answer	Mark	Notes
7.	$\frac{2 \pi r^{2}+2 \pi r h}{4 \pi r^{2}}=2$		5	M1 Also award for $\frac{\pi r^{2}+2 \pi r h}{4 \pi r^{2}}=2$
	$2 \pi r^{2}+2 \pi r h=2 \times 4 \pi r^{2}$ oe			M1 for $2 \pi r^{2}+2 \pi r h=2 \times 4 \pi r^{2}$ oe or $\frac{2 \pi r(r+h)}{4 \pi r^{2}}=2$ If first M1 awarded for $\frac{\pi r^{2}+2 \pi r h}{4 \pi r^{2}}=2$ award this second M1 also for $\pi r^{2}+2 \pi r h=2 \times 4 \pi r^{2}$ oe
	$h=3 r$ oe			A1 If first M1 awarded for $\frac{\pi r^{2}+2 \pi r h}{4 \pi r^{2}}=2$ and second $M 1$ for $\pi r^{2}+2 \pi r h=2 \times 4 \pi r^{2}$ oe Award this A1 also for $h=3.5 r$ oe
	$\frac{\pi r^{2} \times " 3 r "}{\frac{4}{3} \pi r^{3}} \text { oe }$			M1 dep on first two M1s h must be of the form $k r$
		$\frac{9}{4} \text { oe }$		A1
				Total 5 marks

www.igexams.com

9. (a)		$\frac{7}{8}$ for not late Correct binary structure ALL labels and values correct	3	B1 on lower first branch B1 4 branches needed on RHS B1	
(b)	$\begin{aligned} & (1 / 8) \times \text { " }(7 / 8) \text { " or " }(7 / 8) \text { " } \times(1 / 8) \text { or }(1 / 8) \times(1 / 8) \\ & (1 / 8) x \text { " }(7 / 8) \text { " }+ \text { " }(7 / 8) \text { " } \times(1 / 8)+(1 / 8) \times(1 / 8) \end{aligned}$	$\frac{15}{64}$	3	M1 ft Any 1 "correct" product M1 ft 3 "correct" products with intention to add. Only ft probabilities < 1 or M2 for 1 -" $\left(\frac{7}{8}\right)^{2}$ " A1 cao (0.234375)	
					Total 6 marks

10.	$x=0.396396 \ldots . .$. $1000 x=396.396 \ldots$ $999 x=396$			
		$\frac{44}{111}$	2	A1 must reach $\frac{396}{999}$ or equivalent fraction (but not $\frac{44}{111}$)
				Total 2 marks

www.igexams.com

$11 .(\mathrm{a})$		($x=$)0	1	B1 Accept (x) $=0$	
(b)	$\begin{aligned} & \left(\frac{2}{a}+1\right) / \frac{2}{a}=3 \\ & \frac{2}{a}+1=\frac{6}{a} \text { or } 1+\frac{a}{2}=3 \text { oe } \end{aligned}$	4	3	M1 (Any letter in place of a acceptable) Solve $g(x)=3(x=0.5)$ M1 Solve $f(a)=0.5$ A1 dep on M2	
(c)	$\begin{aligned} & y=\frac{x+1}{x} \\ & x(y-1)=1 \\ & x=\frac{1}{y-1} \end{aligned}$	$\frac{1}{x-1}$	3	M1 M1 one occurrence of x A1 reverse labels x and y	$\begin{aligned} & x=\frac{y+1}{y} \text { reverse labels } x \text { and } y \\ & y(x-1)=1 \text { one occurrence of } y \end{aligned}$
					Total 7 marks

