Gold Level

Mark Scheme 5

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Difficulty Level	Gold
Booklet	Mark Scheme5

Time Allowed:	59 minutes
Score:	$/ 49$
Percentage:	$/ 100$

Grade Boundaries:

9	8	7	6	5	4	3	2	1
$>85 \%$	75%	65%	55%	45%	35%	25%	15%	$<15 \%$

www.igexams.com

Question Number	Working	Answer	Mark	Notes	
1.	$\text { eg } \frac{72}{360} \times \pi \times 5.4^{2}-\frac{1}{2} \times 5.4^{2} \times \sin 72^{\circ}$		5		for $\frac{72}{360}$ oe inc 5
				M1	for $\pi \times 5.4^{2}$ or value which rounds to 91.6 seen
				M1	for completely correct method of finding the area of triangle $O A B$ eg $\frac{1}{2} \times 5.4^{2} \times \sin 72^{\circ}$ or $5.4 \times \sin 36^{\circ} \times 5.4 \times \cos 36^{\circ}$
	18.321... (or 18.312...) - 13.866...			A1	for either area correctly evaluated - may be rounded or truncated to 1 dp
		4.46 or 4.45		A1	for answer rounding to 4.46 ($\pi \rightarrow 4.45536 \ldots$) or for answer rounding to 4.45 (3.14 $\rightarrow 4.44607$...) If all M1s scored, award 5 marks for an answer which rounds to 4.46 or 4.45
					Total 5 marks

Question Number	Working	Answer	Mark	Notes	
2.	42.875 seen		4	B1	Also accept 42.874¢\%, 42.87499... throughout
	$\sqrt[3]{42.875}$			B1	Also award for 3.5 if first B1 scored ie if 42.875 seen
	6×3.5^{2}			M1	dep on both B1s
		73.5		A1	cao Award 4 marks if answer is correct and both B marks scored
					Total 4 marks

www.igexams.com

Question
 Number

3.	$2 x^{2}=20-3 x$ May be implied by second M1		5	M1	$y=2\left(\frac{20-y}{3}\right)^{2}$ May be implied by second M1
	$2 x^{2}+3 x-20(=0)$			M1	$2 y^{2}-89 y+800(=0)$
	$\begin{aligned} & (2 x-5)(x+4)(=0) \\ & \text { or } 2 x(x+4)-5(x+4)(=0) \\ & \text { or } x(2 x-5)+4(2 x-5)(=0) \\ & \text { or } \frac{-3 \pm \sqrt{3^{2}-4 \times 2 \times(-20)}}{2 \times 2} \\ & \text { or } \frac{-3 \pm \sqrt{9+160}}{4} \\ & \text { or } \frac{-3 \pm \sqrt{169}}{4} \text { or } \frac{-3 \pm 13}{4} \end{aligned}$			M1	$\begin{aligned} & (2 y-25)(y-32)(=0) \\ & \text { or } 2 y(y-32)-25(y-32)(=0) \\ & \text { or } y(2 y-25)-32(2 y-25)(=0) \\ & \text { or } \frac{89 \pm \sqrt{(-89)^{2}-4 \times 2 \times 800}}{2 \times 2} \\ & \text { or } \frac{89 \pm \sqrt{7921-6400}}{4} \\ & \text { or } \frac{89 \pm \sqrt{1521}}{4} \text { or } \frac{89 \pm 39}{4} \end{aligned}$
		$x=\frac{5}{2}, x=-4$		A1	$y=\frac{25}{2}, y=32$ dep on all method marks
		$\begin{aligned} & x=\frac{5}{2}, y=\frac{25}{2} \\ & x=-4, y=32 \end{aligned}$		A1	$\begin{aligned} & x=\frac{5}{2}, y=\frac{25}{2} \\ & x=-4, y=32 \end{aligned}$ dep on all preceding marks Accept answers given as coordinates
					Total

www.igexams.com

Question Number	Working	Answer	Mark	Notes
4. (a)		-3, (1), -1, -3, 1, 17	2	B2 for all correct, B1 for 3 or 4 correct
(b)	All points plotted correctly from their table Curve		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	B1 ft if at least B1 scored in (a) Plotting tolerance $\pm 1 / 2 \mathrm{sq}$ B1 ft if B1 scored from plotting points. Must be attempt at a smooth curve \& not line segments
(c)		Line segment at $y=5$ drawn $2.2 \rightarrow 2.5 \mathrm{inc}$	2	M1 M1 for $x^{3}-3 x-1=5$ stated or evidence of reading from $y=5$ or $y=5$ stated dep on M1 A1
(d) (i)		$3 x^{2}-3$	2	B2 B1 for $3 x^{2}$ or -3
(ii)		$\begin{array}{r} 3 \times 4^{2}-3 \\ 45 \\ \hline \end{array}$	2	M1 ft for a quadratic in d i) A1 cao
				Total 10 marks

www.igexams.com

Question Number	Working	Answer	Mark	Notes
5. (a)	$180-(90+58)(\mathrm{oe})$	32	2	M1 i.e. $90-58$ A1
(b) (i)		122	1	B1
(ii)	Opposite angles in a cyclic quad ($=180^{\circ}$)		1	$\begin{array}{ll}\text { B1 } & \begin{array}{l}\text { Accept abbreviations if meaning is clear. } \\ \text { B0 for incorrect statements }\end{array}\end{array}$
				Total 4 marks
6. (a)	$\begin{aligned} & \text { ("AC } \left.{ }^{2 " \prime}=\right)^{2}+(7+5)^{2}-2 \times 6 \times(7+5) \cos 28 \\ & \text { ("AC } \left.{ }^{2, "}=\right) 52.855 \ldots \end{aligned}$	7.27	3	M1 A1 awrt to 52.8 or 52.9 A1 awrt to 7.27
(b)	$\begin{aligned} & 6 \times " D X "=12 \times 5 \\ & " D X "=(12 \times 5 \div 6)(=10) \\ & " D C "=" 10 "-6 \end{aligned}$	4	3	M1 M1 for an attempt to use intersecting chord theorem (external or internal case e.g $7 \times 5=6 \times$ " x ") M1 must see a correct justification for the value 10 seen A1 Ans dependent on at least M1
				Total 6 marks

7. (a)	$3.6 \div 20 \times 100$ oe (large squares or heights of bars) or $(6+6+6) \div(10+10+8+35+19+6+6+6) \times 100$ or $90 \div 500 \times 100($ small squares)			M2 a full and correct calculation leading to correct ans heights $=2+2+1.6+7+3.8+1.2+1.2+1.2(=20)$ or $10+10+8+35+19+6+6+6(100)$
(b)	20×10		18	

www.igexams.com

Question Number	Working	Answer	Mark	Notes

9. (a)	$\begin{aligned} & y=3 x-2 \\ & y+2=3 x \end{aligned}$	$(x+2) / 3$	2	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	or $x=3 y-2$ or $x+2=3 y \quad$ must reach $2^{\text {nd }}$ stage Ans only $=$ M1A1 must be a function of x
(b)	$\frac{10}{3 x-2+2}$	$\frac{10}{3 x}$	2	M1 A1 cao	Do not isw if correct answer is seen in body and extra incorrect operations take place. Ans only = M1A1
					Total 4 marks

