Gold Level

Mark Scheme 5

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Difficulty Level	Gold
Booklet	Mark Scheme 5

Time Allowed:	59 minutes
Score:	/49
Percentage:	/100

Grade Boundaries:

9	8	7	6	5	4	3	2	1
>85%	75%	65%	55%	45%	35%	25%	15%	<15%

Question Number	Working	Answer	Mark	Notes	
1.	72 2 1 2		5	M1	72
	eg $\frac{72}{360} \times \pi \times 5.4^2 - \frac{1}{2} \times 5.4^2 \times \sin 72^\circ$		5		for $\frac{72}{360}$ oe inc 5
				M1	for $\pi \times 5.4^2$
					or value which rounds to 91.6 seen
				M1	for completely correct method of finding the
					area of triangle <i>OAB</i> eg $\frac{1}{2} \times 5.4^2 \times \sin 72^\circ$
					or $5.4 \times \sin 36^{\circ} \times 5.4 \times \cos 36^{\circ}$
	18.321 (or 18.312) – 13.866			A1	for either area correctly evaluated – may be rounded or truncated to 1 dp
		4.46 or 4.45		A1	for answer rounding to 4.46
					$(\pi \to 4.45536)$
					or for answer rounding to 4.45
					$(3.14 \rightarrow 4.44607)$
					If all M1s scored, award 5 marks for an
					answer which rounds to 4.46 or 4.45
					Total 5 marks

Question Number	Working	Answer	Mark	Notes	
	42.975		4	D1	ρ.
Ζ.	42.875 seen		4	BI	Also accept 42.8749, 42.87499 throughout
	$\frac{3}{42875}$			B1	Also award for 3.5 if first B1 scored ie if
	V 12.075				42.875 seen
	6×3.5^{2}			M1	dep on both B1s
		73.5		A1	cao Award 4 marks if answer is correct and
					both B marks scored
					Total 4 marks

Question Number	Working	Answer	Mark	Notes

3.	$2x^2 = 20 - 3x$ May be implied by second M1		5	M1	$y = 2\left(\frac{20 - y}{3}\right)^2$
					May be implied by second MI
	$2x^2 + 3x - 20(=0)$			M1	$2y^2 - 89y + 800(=0)$
	(2x-5)(x+4)(=0)			M1	(2y-25)(y-32)(=0)
	or $2x(x+4) - 5(x+4)(=0)$				or $2y(y-32) - 25(y-32)(=0)$
	or $x(2x-5) + 4(2x-5)(=0)$				or $y(2y-25) - 32(2y-25)(=0)$
	or $\frac{-3\pm\sqrt{3^2-4\times2\times(-20)}}{2\times2}$				or $\frac{89 \pm \sqrt{(-89)^2 - 4 \times 2 \times 800}}{2 \times 2}$
	or $\frac{-3 \pm \sqrt{9 + 160}}{4}$				or $\frac{89 \pm \sqrt{7921 - 6400}}{4}$
	or $\frac{-3 \pm \sqrt{169}}{4}$ or $\frac{-3 \pm 13}{4}$				or $\frac{89 \pm \sqrt{1521}}{4}$ or $\frac{89 \pm 39}{4}$
		$x = \frac{5}{2}, x = -4$		A1	$y = \frac{25}{2}, y = 32$
					dep on all method marks
		$x = \frac{5}{2}, y = \frac{25}{2}$		A1	$x = \frac{5}{2}, y = \frac{25}{2}$
		x = -4, y = 32			x = -4, y = 32
					dep on all preceding marks
					Accept answers given as coordinates
					Total 5 marks

Question	Working	Answer	Mark	Notes
Number				
4. (a)		-3, (1), -1, -3, 1, 17	2	B2 for all correct, B1 for 3 or 4 correct
(b)	All points plotted correctly from their table		1	B1 ft if at least B1 scored in (a) Plotting tolerance $\pm \frac{1}{2}$ sq
	Curve		1	B1 ft if B1 scored from plotting points.
				Must be attempt at a smooth curve & not line segments
(c)		Line segment at $y = 5$ drawn		M1 M1 for $x^3 - 3x - 1 = 5$ stated
		-		or evidence of reading from $y = 5$ or $y=5$ stated
		$2.2 \rightarrow 2.5$ inc	2	A1 dep on M1
(d) (i)		$3x^2 - 3$	2	B2 B1 for $3x^2$ or -3
(ii)		$3 \times 4^2 - 3$		M1 ft for a quadratic in d i)
		45	2	A1 cao
				Total 10 marks

Question	Working	Answer	Mark	Notes
Number				

5. (a)	180 - (90 + 58) (oe)				M1	i.e. 90 – 58
			32	2	A1	
(b) (i)			122	1	B1	
(ii)		Opposite angl	<u>les in a cyclic quad</u> ($=180^{\circ}$)	1	B1	Accept abbreviations if meaning is clear.
						B0 for incorrect statements
						Total 4 marks
6. (a)	$("AC^2"=) 6^2 + (7+5)^2 - 2x$	x 6 x (7+5) cos 28			M1	
	("AC ² "=)52.855				A1 av	wrt to 52.8 or 52.9
			7.27	3	A1 av	wrt to 7.27
(b)	6 x "DX" = 12 x 5				M1	M1 for an attempt to use intersecting chord theorem
						(external or internal case e.g 7 x $5 = 6$ x "x")
	"DX" = $(12 \times 5 \div 6)$ (=10))			M 1	must see a correct justification for the value 10 seen
	"DC" = "10" – 6					-
			4	3	A1	Ans dependent on at least M1
						Total 6 marks

7. (a)	$3.6 \div 20 \times 100$ oe (large squares or heights of bars)			M2 a full and correct calculation leading to correct ans
	or (6+6+6) ÷ (10+10+8+35+19+6+6+6) x 100			heights = 2+2+1.6+7+3.8+1.2+1.2+1.2 (=20)
	or 90 ÷ 500 x 100 (small squares)			or 10+10+8+35+19+6+6+6 (=100)
				if not M2 then M1 for 3.6 and 20 (large sq or heights)
				or 6+6+6 and 10+10+8+35+19+6+6+6 (heights)
				or 12+12+12 and 20+20+16+70+38+12+12+12 (frequencies)
		18	3	or 90 and 500 (small sq)
				A1 Ans only = M2A1
(b)	20 x 10			M1 or 1 (large) square = 10 (people)
				or 1 (small) square = 0.4 (people)
				or correct fd seen with no errors
				or $16 \div 5 (= 3.2)$ {fd on 3^{rd} bar}
				or 20+20+16+70+38+12+12+12 (people in blocks)
		200	2	A1 Ans only = M1A1
				Total 5 marks

Question	Working	Answer	Mark	Notes
Number				

8. (a)	0.3 on b	ottom LH branch		B1
		0.8, 0.2, 0.5, 0.5		B1 Second game branches correct
		0.5, 0.5, 0.8, 0.2	3	B1 Third game branches correct
(b)	$(0.7 \times 0.8")+(0.7 \times 0.2" \times 0.5")+(0.3" \times 0.5" \times 0.8")$			M2 ft M1 for 1 correct (ft) branch
		0.75 oe	3	A1
				Alt method (1 – Jo winning)
				M2 $1 - \{(0.7x^{\circ}0.2^{\circ}x^{\circ}0.5) + ((0.3^{\circ}x^{\circ}0.5^{\circ}x^{\circ}0.2) + ((0.3^{\circ}x^{\circ}0.5^{\circ})) +$
				A1
				Total 6 marks

9. (a)	y = 3x - 2			or $x = 3y - 2$
	y + 2 = 3x			M1 or $x + 2 = 3y$ must reach 2^{nd} stage
		(x+2)/3	2	A1 Ans only = M1A1 must be a function of x
(b)	10			M1
	$\overline{3x-2+2}$	<u>10</u>	2	A1 cao Do not isw if correct answer is seen in body and extra
		3 <i>x</i>	2	incorrect operations take place. Ans $only = M1A1$
				Total 4 marks