Gold Level

Mark Scheme 6

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Difficulty Level	Gold
Booklet	Mark Scheme 6

Time Allowed:	57 minutes
Score:	/47
Percentage:	/100

Grade Boundaries:

9	8	7	6	5	4	3	2	1
>85%	75%	65%	55%	45%	35%	25%	15%	<15%

Question	Working	Answer	Mark	Notes
Number				

1.	$36 - 6\sqrt{8} - 6\sqrt{8} + 8 \text{ or } 36 - 12\sqrt{8} + 8$ 44 - 12\sqrt{(4 x 2)} 44 - 12\sqrt{4 x \sqrt{2}}		N	12 M1 for $6^2 + (\sqrt{8})^2$ or $36 + 8$ or $6^2 + \sqrt{64}$ or $-12\sqrt{8}$ or $-6\sqrt{8} - 6\sqrt{8}$
		44 – 24√2*	3 N	11 for $(-)12\sqrt{8} = (-)12 \times 2\sqrt{2}$ or $\sqrt{8} = 2\sqrt{2}$ or $6\sqrt{8} = 6 \times 2\sqrt{2}$ Must see $\sqrt{8}$ stated as $2\sqrt{2}$ for final M1
	LHS = $(6 - 2\sqrt{2})^2$ or $\sqrt{8} = 2\sqrt{2}$ $6^2 - 12\sqrt{2} - 12\sqrt{2} + 4 \times 2$ or $36 - 24\sqrt{2} + 8$		A N N	It: 11 12 M1 for $6^2 + 4 \times 2$ or $36 + 8$
				Total 3 marks

Question	Working	Answer	Mark	Notes
Number				
2.	$\frac{5(x-2)+9(x+2)}{(x+2)(x-2)} (=2)$			M1 correct expression with correct common denominator or $5(x-2) + 9(x+2) = 2(x+2)(x-2)$
	$14x + 8 = 2(x + 2)(x - 2)$ or $\frac{14x + 8}{(x - 2)(x + 2)}$ (=2)			M1 gather terms correctly. Accept $x^2 - 4$ for $(x + 2)(x - 2)$
	$2x^2 - 14x - 16 (= 0)$ oe			A1 correct 3 part quadratic
	$x^2 - 7x - 8 (= 0)$ oe			
	(x+1)(x-8) (=0) oe	1 0	5	M1 or $\frac{7\pm\sqrt{7^2-4x1x-8}}{2}$ oe condone 1 sign error
		x = -1, x = 8	5	A1 dep on previous M1
				Total 5 marks
3.	$\pi r^2 \mathbf{x} 4r - 2 \mathbf{x} 4\pi r^3 / 3 = 125\pi/6$ oe 24 $r^3 - 16 r^3 = 125$ oe			M2 Any equation based on cylinder – 2 spheres = space oe h = 4r must be implicit for award of M2 {decimal form: $12.6r^3 - 8.4r^3 = 65.4$ (1 dp or better)} If not M2 then M1 for $\pi r^2 \times 4r$ or better
	$r^3 = 125/8$ oe			M1 One occurrence of r^3 in correct equation.
	$r = {}^{3}\sqrt{(125/8)}$	2.5	5	M1 A1 awrt to 2.5 Ans dep on M3
				Total 5 marks

4. (i)	5 x 8			M1 Or any correct fd marked on vertical axis
				(2, 4 etc) with no errors
		40	2	or 1 square = 4 students
				A1
4.	Missing blocks = 5cm, 6cm, 1.5cm		2	B2 3 correct blocks
(ii)				If not B2 then B1 for 1 or 2 correct blocks
				Total 4 marks

5.	Black circle = 0.3 White region = 0.6			B1 B1
(a)	All values "correct" for second shot		3	B1ft Allow ft if each group of 3 branches on
				second arrow all sum to1 and are consistent
				with first arrow branches
5.	Any one correct product in numerical form			M1ft e.g. (Black, Miss) or (Miss, Black) or
(b)	e.g. ("0.3" x 0.1) or			(White, White)
	(0.1 x "0.3") or ("0.6" x "0.6")			
	$(``0.3''x \ 0.1) + (0.1x \ ``0.3'') + (``0.6'' x \ ``0.6'')$			
		0.42oe	3	M1ft 3 "correct" products with intention to
				add
				A1 cao
				Total 6 marks

6.	(2x-5)(2x+5)			M2 If not M2 then M1 for numerator or
	(2x+5)(3x-1)			denominator correct
		(2x-5)	3	
		(3x-1)		A1
				Total 3 marks

7.		16x	1	B1
(a) (i)				
	$2x^{-1}$			M1
(a)		$-2x^{-2}$ oe	2	A1
(ii)				
	" $16x$ " + " $-2/x^2$ " = 0			M1
(b)	$16x = 2/x^2$			
	$x^3 = 1/8$			M1 x^3 isolated
	$x = \frac{1}{2}$			
		(½,6)	4	A1, A1
				Total 7 marks

8. (a) (i)		2 a oe	1	B1
		$2\mathbf{a} + \mathbf{b}$ oe	1	B1
(a) (ii)				
		$-\mathbf{a} + \mathbf{b}$ oe	1	B1
(a) (iii)				
(b)	$\overrightarrow{PN} = \mathbf{a} + 1/3 ("-\mathbf{a} + \mathbf{b}")$ $\overrightarrow{PN} = 2\mathbf{a}/3 + \mathbf{b}/3 \{= 1/3 (2\mathbf{a} + \mathbf{b})\}$			M1ft from (a)(iii) i.e. a valid path from P to N, or N to P, using lower case letters.
		stating $PN = PR/3$	2	A1 Arrows not necessary. Dependent on M1
	$\overrightarrow{NR} = \frac{2}{3} ("-\mathbf{a} + \mathbf{b}") + 2\mathbf{a}$ $\overrightarrow{NR} = 4\mathbf{a}/3 + 2\mathbf{b}/3 \{= \frac{2}{3} (2\mathbf{a} + \mathbf{b})\}$			Alt M1ft from (a)(iii) i.e. a valid path from N to R, or R to N, using lower case letters.
		stating $NR = 2PR/3$		A1 Arrows not necessary. Dependent on M1
				NB: If both PN and NR worked out correctly,
				award M1A1
				tor stating $2PN = NR$ or stating or showing PN + NR = PR
				Total 5 marks
	1			i otal o marks

9.	$\sqrt{(16^2 + 10^2)}$ (=18.9 or better)			M1 or M2 for $\sqrt{(8^2 + 5^2)}$ (=9.43 or better)
	"18.867" ÷ 2 (=9.433)			M1 dep on previous M1
	$\tan "x" = 15/ "9.433"$			M1 dep on M2
		57.8	4	A1 57.832 awrt 57.8
				Total 4 marks

10.	(a)	2	4 12 28 60 132 160	1	B1	cao
	(b)		Points correct	2	B1	$\pm \frac{1}{2}$ sq ft from sensible table
						ie clear attempt to add frequencies
		(Curve or line segments		B1	ft from points if 4 or 5 correct or if all
						points are plotted consistently within each
						interval at the correct heights
						Accept curve which is not joined to the
						origin
	(c)	80 (or 80.5) indicated on cf graph		2	M1	for 80 (or 80.5) indicated on
		or stated				cf axis or stated
			approx 4.3		A1	If M1 scored, ft from cf graph
						If no indication of method, ft only from
						correct curve & if answer is correct ($\pm \frac{1}{2}$
						sq tolerance) award M1 A1
						Total 5 marks