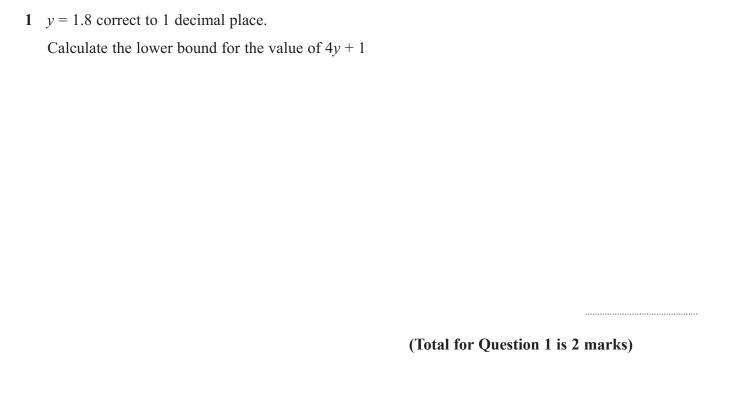
Gold Level

Question Paper 1

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Difficulty Level	Gold
Booklet	Question Paper 1


Time Allowed: 60 minutes

Score: /50

Percentage: /100

Grade Boundaries:

9	8	7	6	5	4	3	2	1
>85%	75%	65%	55%	45%	35%	25%	15%	<15%

2

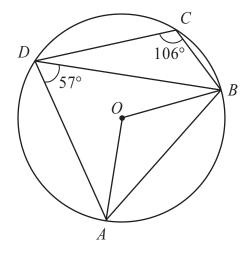


Diagram **NOT** accurately drawn

A, B, C and D are points on a circle, centre O.

Angle $ADB = 57^{\circ}$.

Angle $BCD = 106^{\circ}$.

(a) (i) Calculate the size of angle AOB.

(ii) Give a reason for your answer.

.....

(2)

(b) Calculate the size of angle *BAD*.

0

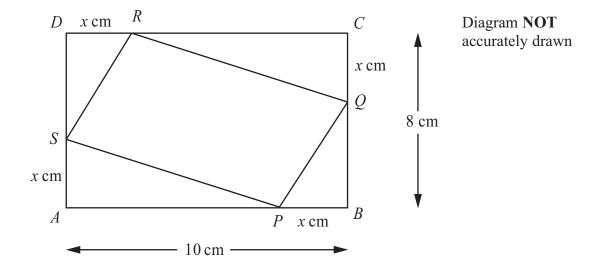
(1)

(Total for Question 2 is 3 marks)

- **3** P is directly proportional to the cube of Q. When Q = 15, P = 1350
 - (a) Find a formula for P in terms of Q.

$$P = \dots$$

$$(3)$$


(b) Calculate the value of P when Q = 20

(Total for Question 3 is 4 marks)

4 $x = a \times 10^n$ where *n* is an integer and $\sqrt{0} \le a < 10$ Find, in standard form, an expression for x^2 . Give your expression as simply as possible.

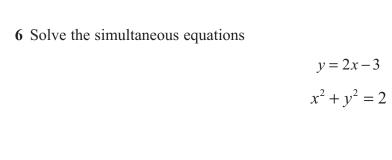
.....

5

ABCD is a rectangle.

AB = 10 cm.

BC = 8 cm.


P, Q, R and S are points on the sides of the rectangle.

$$BP = CQ = DR = AS = x$$
 cm.

(a) Show that the area, $A \text{ cm}^2$, of the quadrilateral PQRS is given by the formula

$$A = 2x^2 - 18x + 80$$

(b) For $A = 2x^2 - 18x + 80$	
(i) find $\frac{dA}{dx}$,	
dx	
(ii) find the value of x for which A is a minimum.	
	<i>x</i> =
(iii) Explain how you know that A is a minimum for this value of x .	
	(5)
	(5)
(Total for Question 5	5 is 8 marks)

(Total for Question 6 is 6 marks)

7

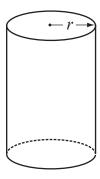
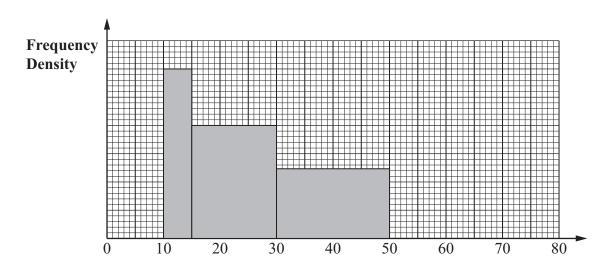


Diagram **NOT** accurately drawn

The diagram shows a solid cylinder and a solid sphere.


The cylinder has radius r.

The sphere has radius r.

Given that $\frac{\textbf{Total surface area of cylinder}}{\textbf{Surface area of sphere}} = 2$

find the value of $\frac{\text{Volume of cylinder}}{\text{Volume of sphere}}$

8 The incomplete histogram and table give information about the ages of people living in a village.

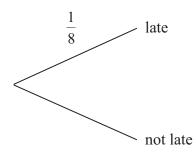
Age (x years)

Age (x years)	Frequency
$0 \leqslant x < 10$	100
10 ≤ <i>x</i> < 15	60
15 ≤ <i>x</i> < 30	
$30 \leqslant x < 50$	
50 ≤ <i>x</i> < 75	50
$75 \leqslant x < 80$	20

(i) Use the histogram to complete the table.

(ii) Use the table to complete the histogram.

9 Alan has to attend a meeting on Monday and on Tuesday.


The probability that he is late for a meeting is $\frac{1}{8}$

(a) Complete the probability tree diagram.

(3)

Monday meeting

Tuesday meeting

(b) Calculate the probability that Alan is late for at least one of these meetings.

(3)

(Total for Question 9 is 6 marks)

Show that the recurring decimal $0.396 = \frac{44}{111}$

(Total for Question 10 is 2 marks)

11
$$f(x) = \frac{2}{x}$$
$$g(x) = \frac{x+1}{x}$$

(a) State which value of x cannot be included in the domain of f or g.

(1)

(b) Solve gf(a) = 3

a = (3)

(c) Express the inverse function g^{-1} in the form $g^{-1}(x)$

$$g^{-1}(x) = \dots$$