Silver Level

Model Answers 4

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Difficulty Level	Gold
Booklet	Model Answers 4

Time Allowed: 51 minutes

Score: / 42

Percentage: /100

1 Showing clear algebraic working, solve the simultaneous equations

$$3a+2b=0$$

$$a+2b=50$$

$$2-1$$

$$(A-3a)+(b-2b)=5-1$$

$$-2a=4$$

$$a=-2$$
Sub a in {0 2}
$$-2+7b=5$$

$$2b=7 : b=3.5$$

$$a=-2$$

$$b=3.5$$

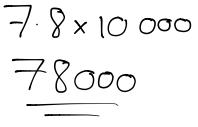
(Total for Question is 3 marks)

2 (a) Expand and simplify

(i)
$$5(2x+1)-3(3x-1)$$

 $|O\rangle(+5) - |O\rangle(+3) = x+8$
(ii) $(y+5)(y-7)$
 $y^2 + y(-7) + 5(y) + 5(-7)$
 $y^2 - 7y + 5y - 35$
 $y^2 - 2y - 35$
 $y^2 - 2y - 35$
(4)

(b) Make r the subject of the formula $V = \pi r^2 h$ where r is positive.


$$\frac{V}{h} = \prod_{r=1}^{\infty} \frac{1}{\pi h} = r^{2}$$

$$-\sum_{r=1}^{\infty} \frac{1}{\pi h} = r^{2}$$

$$r = \frac{\sqrt{\pi h}}{r}$$
(2)

(Total for Question is 6 marks)

- 3 The mass of the Space Shuttle is 7.8×10^4 kilograms.
 - (a) Write 7.8×10^4 as an ordinary number.

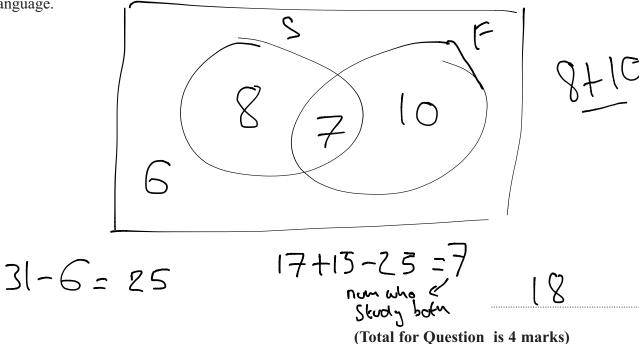
78000

The Space Shuttle docks with the International Space Station. The mass of the International Space Station is 4.62×10^5 kilograms.

(b) Calculate the total mass of the Space Shuttle and the International Space Station. Give your answer in standard form.

$$467 \times 10^{5} + 78 \times 10^{4}$$
 $(462 + 7.8) \times 10^{4}$
 54×10^{5}
 $(462 + 7.8) \times 10^{4}$

(Total for Question is 3 marks)


4 There are 31 students in a class.

The only languages available for the class to study are French and Spanish.

- 17 students study French.
- 15 students study Spanish.
- 6 students study neither French nor Spanish.

Using a Venn diagram, or otherwise, work out how many students study only one

language.

5 Solve the simultaneous equations

$$y - 2x = 6$$

$$y + 2x = 0$$

Show clear algebraic working.

The algebraic working.

$$(y-y) + 7x - (-7x) = 0 - 6$$
 $(y+x) = -6$
 $(y$

(Total for Question is 3 marks)

6 The table shows the diameters, in kilometres, of five planets.

Planet	Diameter (km)
Venus	1.2×10^4
Jupiter	1.4×10^{5}
Neptune	5.0 × 10 ⁴
Mars	6.8×10^{3}
Saturn	1.2 × 10 ⁵

(a) Which of these planets has the smallest diameter?

(b) Calculate the difference, in kilometres, between the diameter of Saturn and the diameter of Neptune.

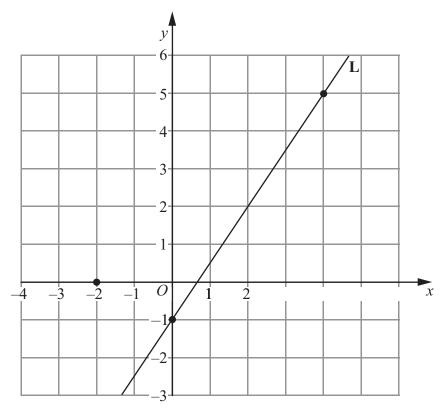
$$\rightarrow \sim 10^4$$
 km (2)

The diameter of the Moon is 3.5×10^3 km.

The diameter of the Sun is 1.4×10^6 km.

(c) Calculate the ratio of the diameter of the Moon to the diameter of the Sun. Give your answer in the form 1:n

MOON: SUN


3.5×10³, 1.4×10⁶ ->
$$\frac{3.5 \times 10^3}{3.5 \times 10^3} \cdot \frac{1.4 \times 10^6}{3.5 \times 10^3}$$

-> 1:400

1:400

(Total for Question is 5 marks)

7 The points (0, -1) and (4, 5) lie on the straight line L.

(a) Work out the gradient of L.

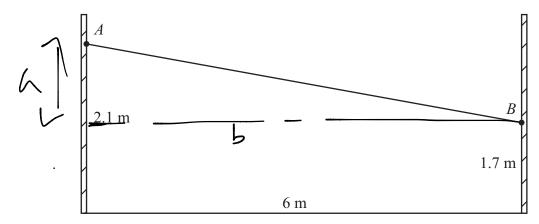
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 1}{4 - 0} = \frac{3}{7}$$

<u>J. 5</u> (2)

(b) Write down an equation of L.

y=1.5~1

(c) Find an equation of the line which is parallel to L and passes through the point (-2, 0)


 $m_1 = m_2$ as parrolal -> $y - y_1 = m_1 (x - x_1)$ -> y - 0 = 1.5(x - 2)

y=1.5x+3

(Total for Question is 5 marks)

- **8** A washing line is attached at points *A* and *B* on two vertical posts standing on horizontal ground.
 - Point *A* is 2.1 metres above the ground on one post.
 - Point *B* is 1.7 metres above the ground on the other post.
 - The horizontal distance between the two posts is 6 metres.

Diagram **NOT** accurately drawn

Calculate the distance AB.

Give your answer correct to 3 significant figures.

$$A = 21 - 17 = 0.4$$

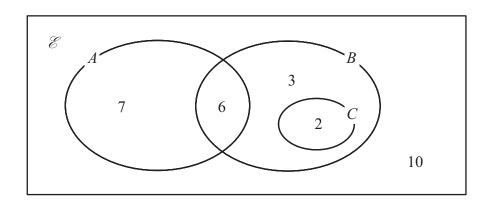
$$AB^{2} = 0.2 + 0.2 = 536.16$$

$$AB = 6.01 = 6.01$$

(Total for Question is 4 marks)

9 Make h the subject of the formula $2\pi r(r+h)$

$$\frac{A}{2n} = r(r+h)$$


$$\frac{A}{2n} - r^2 = rh$$

$$\frac{A}{2n} - r^2 = h$$

$$h = \frac{A}{2\pi r} - \Gamma$$

(Total for Question is 2 marks)

10 The Venn diagram shows a universal set \mathscr{E} and three sets A, B and C.

7, 6, 3, 2 and 10 represent the **numbers** of elements.

Find

(i) $n(A \cup B)$

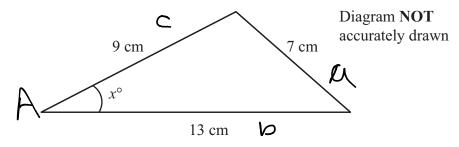
18

(ii) n(A')

15

(iii) $n(B \cap C')$

$$6 + 3$$

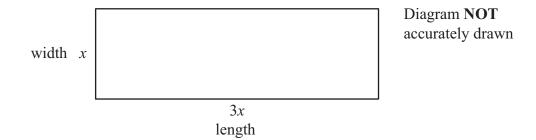

9

(iv) $n(A' \cup B')$

22

(Total for Question is 4 marks)

11



Calculate the value of *x*.

Give your answer correct to 1 decimal place.

(Total for Question is 3 marks)

12 The diagram shows a rectangular playground of width x metres and length 3x metres.

The playground is extended, by adding 10 metres to its width and 20 metres to its length, to form a larger rectangular playground.

The area of the larger rectangular playground is double the area of the original playground.

(a) Show that
$$3x^2 - 50x - 200 = 0$$

$$A_{3} = 3x \times 3(= 3x^{2})$$

$$A_{3} = (3x+70) \times (5(410))$$

(b) Calculate the area of the original playground.

$$3x^{7} - Sox - 200$$

 $(3x + 10)(x - 70) = 0$
 $x = -\frac{10}{3}(x = 70)$
 $A_{1} = 3 \times 70^{2} = 1200 \text{ m}^{2}$

$$\frac{200}{(5)}$$