www.igexams.com

Silver Level

Model Answers 9

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Difficulty Level	Gold
Booklet	Model Answers 9

Time Allowed:	57 minutes
Score:	$/ 47$
Percentage:	$/ 100$

www.igexams.com

1 Find the Lowest Common Multiple (LCM) of 20 and 24

Prime Factors of 20: $2 \times 2 \times 5$
Prime Factors of $24: 2 \times 2 \times 2 \times 3$
Disitinct prime factors are $2,2,2,3,5$
Lowest common multiple is the distinct prime factor smultiplied together $2 \times 2 \times 2 \times 3 \times 5=120$

www.igexams.com

2

Triangle $P Q R$ is an enlargement, centre O, of triangle $A B C$.
$O A P$ and $O B Q$ are straight lines.
$O A=2 \mathrm{~cm}$.
$A P=6 \mathrm{~cm}$.
$B Q=7.2 \mathrm{~cm}$.
$A C=3.7 \mathrm{~cm}$.
(a) Work out the length of $O B$.

Ratio of sides $\mathrm{AO} / \mathrm{AP}=\mathrm{BO} / \mathrm{BQ}$
2/6 = BO / 7.2
$7.2 \times 2 / 6=2.4$
(b) Work out the length of $P R$.
$O A P=O A+A P=8$
Scale factor $=$ large/small $=8 / 2$
Therefore scale factor is 4
$\mathrm{PR}=\mathrm{AC} \times \mathrm{sf}=3.7 \times 4=14.8$

www.igexams.com

The area of triangle $P Q R$ is $72 \mathrm{~cm}^{2}$
(c) Work out the area of triangle $A B C$.

Area scale factor is length scale factor squared $4^{2}=16$

Large triangle area $=$ small triangle area x sf area
$72 / 16=$ small triangle area $=4.5$

$4.5 \quad \mathrm{~cm}^{2}$
 (2)

(Total for Question is 7 marks)

www.igexams.com

3 (a) Solve the simultaneous equations $3 x+5 y=14$

$$
4 x+3 y=4
$$

Show clear algebraic working.

$$
\begin{aligned}
& (1) \times 3 \\
& 9 x+15 y=42
\end{aligned}
$$

Eq 2×5
$20 x+15 y=20$
Eq 2-1
$20 x-9 x+15 y-15 y=20-42$
$11 x=-22$
$X=-2$, sub back into eq 1
$-6+5 y=14$
$5 y=20$
$y=4$

$$
\begin{aligned}
& x=-2 \\
& y=4
\end{aligned}
$$

(4)
(b) Write down the coordinates of the point of intersection of the two lines whose equations are $3 x+5 y=14$ and $4 x+3 y=4$

(1)

www.igexams.com

4

Diagram NOT
accurately drawn

The diagram shows a shape made from a solid cube and a solid cylinder.
The cube has sides of length 8.7 cm .
The cylinder has a radius of 2.7 cm and a height of 4.9 cm .
Calculate the total surface area of the solid shape.
Give your answer correct to 3 significant figures.
Surface area of 1 can be neglected as it is the same as the surface area missing from 3
Surface area of 2
$(2 \pi r) h=2 \pi(2.7)(4.9)$
Surface area of 3
$6 \times$ each square face $=6 \times 8.7^{2}$
Area $2+3=537$

www.igexams.com

Ivan is a shot putter.
The formula $h=2+6 t-5 t^{2}$ gives the height, h metres, of the shot above the ground t seconds after he has released the shot.
(i) Solve $2+6 t-5 t^{2}=0$

Give your solutions correct to 3 significant figures.
Show your working clearly.
Using the quadratic formula

The shot hits the ground after T seconds.
(ii) Write down the value of T.

Give your answer correct to 3 significant figures.
1.47 is the only positive solution

$$
T=1 \cdot 47
$$

www.igexams.com

6 Express 825 as a product of its prime factors.

$$
\begin{aligned}
& 2 \text { goes into } 825 \text { zero times } \\
& 3 \times 275=825 \\
& 3 \times 5 \times 55=825 \\
& 3 \times 5 \times 5 \times 11=825 \\
& 11 \text { is prime so factors are : } \\
& 3 \times 5 \times 5 \times 11
\end{aligned}
$$

7 The mean of four numbers is 2.6
One of the four numbers is 5
Find the mean of the other three numbers.
For number so sum of all numbers if mean x number of numbers $2.6 \times 4=10.4$
Subtract 4th value from total and divide by 3, the number of values left
$(10.4-5) / 3=1.8$

www.igexams.com

8 The table shows the land areas, in km^{2}, of four countries.

Country	Land area $\mathbf{(k m}^{\mathbf{2}} \mathbf{)}$
Ethiopia	$1.13 \times!10^{6}$
Algeria	$2.38 \times!10^{6}$
Nigeria	$9.24 \times!10^{5}$
Kenya	$5.83 \times!10^{5}$

(a) Which country has the largest land area?

Algeria has the largest exponent and coefficient
Algeria
(1)
(b) Calculate the total land area, in km^{2}, of all four countries. Give your answer in standard form.

Ensure numbers have the same exponent then add coefficients.
$(11.3+23.8+9.24+5.83) \times 10^{5}$
5.017×10^{6}
$5.017 \times 10^{6} \ldots \ldots \ldots \ldots \ldots . . \mathrm{km}^{2}$
(2)

Population density is calculated by the formula

$$
\text { Population density }=\text { Population } \div \text { Land area }
$$

(c) In one year, the population of Ethiopia was 7.91×10^{7}

Calculate the population density of Ethiopia for that year.
Population density $=\frac{7.91 \times 10^{7}}{1.13 \times 10^{6}}$
Subtract exponents, and divide coefficients

$$
\frac{7.91}{1.13} \times 10^{7-6}=7 \times 10^{1}=70
$$

www.igexams.com

9

Diagram NOT
accurately drawn

The diagram shows an equilateral triangle $A B C$ and an isosceles triangle $B C D$.
$A B=A C=B C=C D$.
Angle $A B D=x^{\circ}$
Express the size of angle $A C D$ in terms of x°, giving your answer as simply as possible.
Give a reason for each step in your working.
ABC. Is 60 as it is an equilateral triangle
DBC $+x$ therefore $=60$
DBC $=60-x$
$\mathrm{DBC}=\mathrm{CDB}$ as it is isosceles
$D B C+C D B+B C D=180$
$180=60-x+60-x+B C D$
$60+2 x=B C D$

10 Factorise fully $\quad 4(x-5)^{2}+3(x-5)$
Take out a factor of $\mathrm{X}-5$

$$
\begin{aligned}
& (x-5)(4(x-5)+3) \\
& (x-5)(4 x-20+3) \\
& (x-5)(4 x-17)
\end{aligned}
$$

$$
(x-5)(4 x-17)
$$

www.igexams.com

11 On a map, 4 centimetres represents a real distance of 1 kilometre.
(a) On the map, the distance between two points is 14 cm .

Work out the real distance between these two points.
Give your answer in kilometres.
$4 \mathrm{~cm}=1000 \mathrm{~m}$ therefore $1 \mathrm{~cm}=250 \mathrm{~m}$
$14 \mathrm{~cm} \times$ scale $=$ real distance
$14 \times 250=3500 \mathrm{~m}=3.5 \mathrm{~km}$

(2)
(b) Work out the scale of the map in the form $1: n$

Cont. for part a)
$1 \mathrm{~m}=100 \mathrm{~cm}$
$250 \mathrm{~m}=25000 \mathrm{~cm}$
1 cm on map $=25000 \mathrm{~cm}$ in real life so scale is
1:25000

1 : 25000
(2)

www.igexams.com

Diagram NOT accurately drawn

The diagram shows the positions of a yacht Y, a ship S and a beacon B.
The bearing of B from Y is 228°
(a) Find the bearing of Y from B.
$90+228+a=360$
$\mathrm{a}=42$
Angles in a triangle add to 180
$180=90+42+x$
$X=48$

The bearing of S from Y is 118°
(b) Find the size of the angle $B Y S$.

$$
B Y S=228-118=110
$$

www.igexams.com

(c) Given also that $B Y=S Y$, find the bearing of S from B.

$$
\begin{aligned}
& \text { YBS }=\text { YSB }(\text { isosceles triangle }) \\
& 2 Y B S+110=180 \\
& 2 Y B S=70 \\
& \text { YBS }=35 \\
& \text { YBS }+x=\text { bearing of } S \text { from } B=42+35=83
\end{aligned}
$$

83 。
(2)

