Silver Level

Mark Scheme 9

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Difficulty Level	Silver
Booklet	Mark Scheme9

Time Allowed:	57 minutes
Score:	$/ 47$
Percentage:	$/ 100$

Grade Boundaries:

9	8	7	6	5	4	3	2	1
$>90 \%$	80%	70%	60%	50%	40%	30%	20%	$<20 \%$

www.igexams.com

Question	Working	Answer	Mark	Notes
$\mathbf{1}$	$20=2^{2} \times 5$ and $24=2^{3} \times 3$ or $2^{3} \times 3 \times 5$ or $20,40,60,80,100,120$ and $24,48,72,96,120$		2	M1
		120		A1 \quad or $2^{3} \times 3 \times 5$ oe
				Total 2 marks

Question	Working	Answer	Mark	Notes
2 (a)	$7.2 \times \frac{2}{6} \text { or } 7.2 \div \frac{6}{2}$		2	M1
		2.4		A1 cao
(b)	$\text { scale factor }=\frac{8}{2} \text { or } 4 \text { or } \frac{2}{8} \text { or } \frac{1}{4}$		3	M1 for $\frac{8}{2}$ or 4 or $\frac{2}{8}$ or $\frac{1}{4}$
	$3.7 \times 4 \text { or } 3.7 \div \frac{1}{4}$			M1 (dep)
		14.8		$\begin{array}{ll} \hline \text { A1 } & \text { Cao } \\ & \text { SC: M1 for answer of } 11.1 \\ \hline \end{array}$
(c)	4^{2} or $(8 \div 2)^{2}$ or $(2 \div 8)^{2}$ or $(1 \div 4)^{2}$		2	M1 or for complete correct method of finding vert ht ($h \mathrm{~cm}$) of $\triangle P Q R$ and vert ht $(H \mathrm{~cm})$ of $\triangle A B C$ $\begin{aligned} & \text { eg } \frac{1}{2} \times " 14.8 " \times h=72 \\ & h=\frac{144}{" 14.8^{\prime \prime}}(9.7297 \ldots) \\ & H=\frac{144}{\prime 14.8^{\prime \prime}} \div " 4 "(2.4324 \ldots) \end{aligned}$
		4.5oe		A1 SC: M1 for an answer of 8
				Total 7 marks

Question	Working		Answer	Mark	Notes
3 (a)	$\begin{aligned} & 12 x+20 y=56 \\ & 12 x+9 y=12 \end{aligned}$	$\begin{aligned} & 9 x+15 y=42 \\ & 20 x+15 y=20 \end{aligned}$		4	M1 for coefficients of x or y the same or for correct rearrangement of one equation followed by substitution in the other eg $3 x+5\left(\frac{4-4 x}{3}\right)=14$
	$(y=) 4$	$(x=)-2$			A1 dep on M1
	eg $3 x+5 \times 3=14$				M1 (dep on first M1) for substituting for the other variable
			-2 4		A1 cao dep Award full marks for correct values if at least first M1 scored
(b)			-2, 4	1	B1 ft from (a)
					Total 5 marks
Question	Working		Answer	Mark	Notes
4	$2 \times \pi \times 2.7 \times 4.9$ or $83(.12654 . .$.			3	M1May be rounded or truncated to at least 2 sf (83.0844 if 3.14 used)
	6×8.7^{2} oe or 454.14				M1 May be rounded or truncated to at least 2 sf
			537		A1 for answer rounding to 537
					Total 3 marks

www.igexams.com

Question	Working	Answer	Mark	Notes
5 (i)	$\frac{-6 \pm \sqrt{6^{2}-4 \times-5 \times 2}}{2 \times-5}$		4	M1 for correct substitution condone + in place of \pm and condone one sign error in substitution
	$\frac{-6 \pm \sqrt{76}}{-10} \text { or } \frac{-6 \pm \sqrt{36+40}}{-10}$			M1 for correct simplification
		$-0.2721 .47$		A1 Award for answers which round to -0.272 ($-0.2717 . .$.) and 1.47 (1.4717...) Award 3 marks for correct answers, if at least M1 scored. Condone missing negative solution
(ii)		1.47		B1 for answer which rounds to 1.47 ft from (i) if only one positive solution given
				Total 4 marks

6.	Fully correct factor tree or repeated division to reach prime factors (condone inclusion of 1's) or $3,5,5,11$ or $3 \times 5 \times 5 \times 11 \times 1$		M2Factors must multiply to 825
If not M2 then M1 for correct but incomplete factor tree/			
division ladder which includes 2 different primes.			
(e.g. $25 \times 3 \times 11$)			

www.igexams.com

www.igexams.com

\begin{tabular}{|c|c|c|c|c|c|}
\hline 9. \& \begin{tabular}{l}
(DBC =) \(60-x\) \\
(Angles in an) equilateral triangle (\(=60\) degrees) \\
\(B D C=60-x\) or \(B C D=60+2 x\) oe \\
Base/bottom angles in an isosceles triangle (are equal)
\[
(B C D=) 60+2 x
\]
\end{tabular} \& \(2 x\) \& 4 \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
Ca \\
B1
\end{tabular} \& \begin{tabular}{l}
Can be marked on diagram. \\
\{Reason 1\} \\
Can be marked on diagram. \\
\{Reason 2\} both reasons 1 and 2 needed for B1 \\
marked on diagram. \\
Answer only = B3. \\
Numerical methods leading to a numerical answer can only score B1 (for giving both reasons adequately).
\end{tabular} \\
\hline \& \begin{tabular}{l}
Alternative: \{Call ACD " \(y\) "\} \\
(BDC and \(D B C=) 60-" y " / 2\) \\
Base/bottom angles in an isosceles triangle (are equal)
\[
x+(60-" y " / 2)=60 \mathrm{oe}
\] \\
(Angles in an) equilateral triangle (\(=60\) degrees)
\end{tabular} \& \(2 x\) \& 4 \& B2

B1

B1 \& | B2 for both ($B D C$ and $D B C=$) $60-y / 2$ |
| :--- |
| B1 for either $(B D C$ or $D B C=) 60-y / 2$ |
| Can be marked on diagram. |
| \{Reason 1\} |
| i.e. Angle $A B C$ is 60 |
| \{Reason 2\} both reasons needed for B1 |
| Answer only = B3. |
| Numerical methods leading to a numerical answer can only score B1 (for giving both reasons adequately). |

\hline \& \& \& \& \& Total 4 mar

\hline
\end{tabular}

10.	$(x-5)\{4(x-5)+3\}$	$(x-5)(4 x-17)$	2	M1 A1

www.igexams.com

11. (a)	$14 \div 4$ oe	3.5	2	M1 A1
(b)	$4(\mathrm{cms})=100000(\mathrm{cms})$ or $4: 100000$ or $100000 \div 4$ or $1(\mathrm{~km})=0.00004(\mathrm{~km})$ or $1: 0.00004$ or " $3.5 " \times 10^{5} \div 14$		M1	
		$1: 25000$	2	A1 cao

12. (a)	$228-180(=48)$ or $360-228(=132)$ then $180-132$	048	2	M1Can be marked on diagram. i.e Full method leading to correct answer. Accept 48
(b)		110	1	B1
(c)	$228-118(=110)$ $(180-" 110 ") \div 2(=35)$ $" 48 "+" 35 "$	083	2	M1ftbearing from (a) +35 Accept 83

