Movement and position

Question paper 3

Level	IGCSE(9-1)
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2P)
Topic	Forces and motion
Sub-Topic	Movement and position
Booklet	Question paper 3

Time Allowed: 56 minutes

Score: /46

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'75%	70%	60%	55%	50%	<50%

1 (a) A boy of mass 43.2 kg runs and jumps onto a stationary skateboard.

The boy lands on the skateboard with a horizontal velocity of 4.10 m/s.

(i) State the relationship between momentum, mass and velocity.

(1)

(ii) The skateboard has a mass of 2.50 kg.

Using ideas about conservation of momentum, calculate the combined velocity of the boy and skateboard just after the boy lands on it.

(4)

combined velocity = m/s

(b) The boy holds a heavy ball as he stands on a stationary skateboard.

The boy throws the ball forwards while still standing on the skateboard.

Explain what happens to the boy and the skateboard.

(2)

(Total for Question 1 = 7 marks)

2 The diagram shows a gate with a lever-operated catch.

A loop on the bolt fits around the lever-arm at A.

(a) (i) Describe now the lever-aim is used to move the boit.	(1)
(ii) Suggest why the spring is needed.	(1)

(b) The lever-arm operates using the principle of moments.	
(i) State the principle of moments.	(1)
(ii) The force applied at point B is 22 N.The pivot is 110 cm from point B and 38 cm from point A.Calculate the force exerted on the lever-arm at point A by the spring.	(3)
force at point A =	N
(iii) Explain how the force applied at point B would need to change if the distand from the pivot to point A is increased.	ce (2)

(Total for Question 2 = 8 marks)

3 An ice skater throws a 0.23 kg snowball with a velocity of 13 m/s.

(c) The skater wears soft knee pads that compress easily.	
Explain how the pads protect her knees when she falls on the ice.	
	(3)

(Total for Question 3 = 9 marks)

()	which are scalars.		.s to show which	quantities are vecto	ns arra
	One has been do	ne for you.			
		Quantity	Vector	Scalar	
		distance			
		force			
		momentum	✓		
		speed			
		velocity			
(b)	A car travels at 20) m/s.			
	The mass of the c	ar is 1500 kg.			
		ation linking mom	entum, mass and	l velocity.	
		momentum of the	car.		

momentum = kg m/s

(c) In a crash test, a car runs into a wall and stops.

(Author: Brady Holt, 2010)

The momentum of the car	before the crash is 22500 kg m/s.
The car stops in 0.14 s	

(i)	Calculate the average force on the car during the crash.	(2)
	average force =	N
(ii)	Use ideas about momentum to explain how seat belts can reduce injuries to passengers during a crash.	
		(3)

5	Cars have a number of features that make them safer in a collision.	
	(a) Apart from seat belts, name two safety features that reduce the risk of serious injuin a car crash.	
		(2)
1		
2		
	(b) Photograph A shows a person wearing a seat belt.	
	seat belt © WHO 2013 Photograph A	
	(i) Using ideas of momentum and force, explain how a seat belt reduces the risk	
	of serious injury in a car crash.	(4)

(ii) Photograph B shows a full-body harness used in a racing car.

Photograph B

Suggest why a full-body harness is used in a racing car, instead of an ordinary seatbelt.

(1)

(c) Photograph C shows a crash-test dummy in a car. The car has crashed into a concrete wall.

© Peter Ginter/Getty Images

Photograph C

State what happens to the momentum of the car during the crash.

(1)

te the velocity of the car.	(3)
te the velocity of the car.	(3)
te the velocity of the car.	(3)
te the velocity of the car.	(3)
to the valedity of the car	
-	
mass 1500 kg has the same momentum as the truck.	
of mass 10 000 kg is moving with a velocity of 4.5 m/s.	
	(1)
	equation linking momentum, mass and velocity.