Forces, movement, shape and momentum
 Mark Scheme 2

Level			IGCSE(9-1)		
Subject			Physics		
Exam Board			Edexcel IGCSE		
Module			Double Award (Paper 1P)		
Topic			Forces and motion		
Sub-Topic			Forces, movement, shape and momentum		
Booklet			Mark Scheme 2		
Time Allowed:					
Score:	/6				
Percentage:	/10				
Grade Boundaries:					
A* A	B	C	D	E	U
>85\% 775\%	70\%	60\%	55\%	50\%	<50\%

www.igexams.com

Question number	Answer	Notes	Marks
1 (a) (i)	force = mass x acceleration;	in words or in accepted symbols e.g. F=ma	1
(ii)	substitution; evaluation; e. 38×1.5 $57(N)$	57000 (N) scores 1 mark	2
(iii)	any suitable suggestion; e.g. friction between snow/ground and sledge ground is not level towing rope/direction at an angle to the ground/direction of movement	allow	

(b) (i)	$\text { acceleration }=\frac{\text { change in velocity; }}{\text { time (taken) }}$	in words or in accepted symbols e.g. $a=\frac{\Delta v}{t}$ $a=\frac{v-u}{t}$ not ' s ' for ' v '	1
(ii)	working must be shown rearrangement of equation OR substitution; evaluation to at least 2SF; e. $\begin{aligned} \mathrm{t} & =\frac{2.8}{1.5} \\ & =1.9(\mathrm{~s}) \end{aligned}$	Calculation of velocity or acceleration scores 1 mark max. allow 1.87 no unit required	2

www.igexams.com

(c) (i)	MP1. statement of total distance = area under graph; MP2. any 1 correct distance for a segment of journey; e.g. calculation of distance during acceleration $(1 / 2 \times 3.25 \times 2.5=4.1 \mathrm{~m})$ calculation of distance during constant speed $(3.25 x 8=26 m)$ calculation of distance during deceleration $(1 / 2 \times 3.25 \times 4=6.5 \mathrm{~m})$ MP3. correct total distance 36.6 (m);	may be assumed by an attempt at sum of the areas allow range of 36-37 (m)	3
(ii)	$\text { (average) speed }=\frac{\text { distance (moved) }}{\text { time (taken) }}$	in words or in accepted symbols e.g. $\mathrm{v}=\mathrm{s} / \mathrm{t}$ condone $\mathrm{s}=\mathrm{d} / \mathrm{t}$	1
(iii)	substitution; evaluation; e.g. 36.6/14.5 $2.52(\mathrm{~m} / \mathrm{s})$	allow ecf from (c)(i) for distance ignore s.f. allow answers that round to 2.5 or 2.6 (m / s)	2

Total 13 marks

www.igexams.com

Question number	Answer	Notes	Marks
2 a	any FIVE from: MP1. Object has weight or there is a downward force (due to gravity on the object); MP2. So it accelerates (downwards); MP3. there is (a force of) drag (upwards or to oppose movement); MP4. drag increases as speed increases; MP5. eventually drag = weight ; MP6. (hence) resultant force is zero; MP7. (hence) object travels at constant speed;	allow: gravity pulls it down the speed/velocity increases oil resistance / water resistance / air resistance for drag oil friction / water friction / air friction for drag 'drag increases as it accelerates’ forces are equal / forces are balanced accept 'no acceleration' DO NOT ALLOW - (The drag) slows it down MP2 - upthrust for drag MP3 - resistance $=$ acceleration for MP5 - terminal velocity for constant speed for MP7	5

(Total for Question $2=10$ marks)

www.igexams.com

Question number	Answer	Notes	Marks
$3(\mathrm{a})$	any two from : a balance/scales; metre rule or measuring tape; stopwatch or stop-clock;	allow newtonmeter	2
(b)	dependent $=$ time (taken for fall); independent = mass (of cupcake cases);	accept speed (of cupcake cases) accept number/weight (of cupcake cases)	2
(c)	Any ONE of - (constant) height; - still air/no (cross) wind; - from rest/zero force at launch; - identical (cupcake) cases;		1
(d)	time in s; mass in g;	accept in either order accept mass in kg weight in N number of cupcake cases in numbers/no units	2

www.igexams.com

(e)	Any one of \bullet detail of any sensible and valid procedure; e.g. repeat readings for time and then average readings detail of more suitable conditions e.g. measure over a larger fall work indoors/reduce draughts;	allow more accurate timing methods;	

www.igexams.com

Question number	Answer	Notes	Marks
3(f)	down arrow labelled weight;	allow gravitational force/pull ignore 'gravity'	2
(i)	up arrow labelled drag;	allow air resistance accept friction, upthrust ignore lift	
(ii)	any three from	do not credit repeat of the diagram above	3
	MP1. idea of unbalanced force; e.g. at the start, the only force is weight part way down, the weight is greater than the drag MP2. (this unbalanced) force causes acceleration; MP3. idea of balanced forces near the bottom; e.g. near the bottom the forces are equal MP4. therefore no acceleration; e.g. it reaches terminal velocity	there is no upward force at the start weight equals drag	

(Total for Question $3=13$ marks)
www.igexams.com

Question number	Answer	Notes	Marks
4 (a) (i)	work done = force x distance moved;	Accept W = F x d Allow rearrangements do not accept eqn in units only	1
(iii)	Substitution into correct equation; Calculation; 170×110 19000 (J) exactly same as their answer to (ii);	Accept $\mathbf{1 8} \mathbf{7 0 0}$ (J)	2

www.igexams.com

Question number	Answer	Notes	Marks
4 (b) (i) (ii)	$\begin{aligned} & \mathrm{KE}=1 / 2 \mathrm{mv}^{2} \\ & \text { addition of masses before OR addition of energies after; } \\ & \text { Substitution into correct equation; } \\ & \text { Calculation; } \\ & \begin{array}{l} 1650+950=2600 \quad \text { (OR } 436425+251275=687700) \\ 1 / 2 \times 2600 \times 23^{2} \\ 688000 \end{array} \end{aligned}$	Accept word equation Accept for 1 mark - either 436000 or 251000 accept for 2 marks - both 436000 and 251000 Accept for 3 marks- 687700	1 3
(c)	Any three of 1. idea that mass and acceleration are inversely related; 2. Idea that (total) mass is less; 3. Idea of less (air) resistance / friction; 4. Idea of less work done/less energy used; 5. Idea of amount work related to amount of (chemical) energy from fuel;	allow $\mathrm{F}=\mathrm{m} \times \mathrm{a}$ mentioned weight for mass drag doesn't have to use energy to pull the caravan	3
		Total	11

www.igexams.com

www.igexams.com

$\begin{array}{c}\text { Question } \\ \text { number }\end{array}$	Answer	Notes	Marks
5 (c)	weight of ruler;	$\begin{array}{l}\text { Accept other valid reasons } \\ \text { allow } \\ \text { force for weight } \\ \text { ignore } \\ \text { 'it's got a force acting' } \\ \text { 'because of gravity' }\end{array}$	1

www.igexams.com

Question number	Answer		Notes	Marks
6 (a)	all 3 for both marks; any two for 1 mark ;		each incorrect tick $=$-1	2
	item	Tick if needed		
	ammeter			
	steel spring			
	retort stand and clamp	\checkmark		
	rubber band	given \checkmark		
	ruler	\checkmark		
	thermometer			
	mass hanger	\checkmark		
	mass	given \checkmark		

www.igexams.com

