Mains Electricity
 Mark Scheme 3

Level	IGCSE(9-1)
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2P)
Topic	Electricity
Sub-Topic	Mains Electricity
Booklet	Mark Scheme 3
Time Allowed:	$\mathbf{8 2}$ minutes
Score:	$\mathbf{/ 6 8}$
Percentage:	$\mathbf{1 0 0}$

Grade Boundaries:							
A*	A	B	C	D	E	U	
$>85 \%$	775%	70%	60%	55%	50%	$<50 \%$	

www.igexams.com

Question number			Answer	Notes	Marks
1	a				1
	b	i	Any two ideas from: MP1. it acts as water bath; MP2. gives more gradual heating or cooling OR gives (easier/better) control of temperature; MP3. protects the thermistor against direct heating/prevents intense heating;	allow water distributes temperature (more) evenly /RA for air very high temperature	2
		ii	B; in parallel across the thermistor in series with the thermistor		1
	c	i	ignore orientation of the graph suitable scales marked on both axes both axes labelled with quantity and points within $\pm 1 / 2$ small square; ;	$>50 \%$ of grid used); nit;	4
		ii	anomalous point at 60, 2350;		1
		iii	LOBF; should go through 60, 1750 approx no obvious abrupt changes of gradient		1

www.igexams.com

www.igexams.com

Question Number	Answer	Notes	Marks
2 (a) (i) (ii)	input power = output power; OR $I_{p} V_{p}=I_{S} V_{S} ;$ OR $\mathrm{I}_{\text {in }} \mathrm{V}_{\text {in }}=\mathrm{I}_{\text {out }} \mathrm{V}_{\text {out }} ;$ Substitution in correctly rearranged equation; Calculation; e.g. $\begin{aligned} & \mathrm{I}_{\mathrm{s}}=\frac{(2 \times 230)}{110} \\ & 4(\mathrm{~A}) \end{aligned}$	A dimensionally correct power equation is required. Accept - Power in = Power out $\mathrm{I}_{1} \mathrm{~V}_{1}=\mathrm{I}_{2} \mathrm{~V}_{2}$ input power $=$ output power $V_{\mathrm{P}} I_{\mathrm{P}}=V_{\mathrm{S}} I_{\mathrm{S}}$ Full marks for bald correct answer Accept more s.f. e.g. 4.2, 4.18, 4.1818	1
(b) (i)	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{P}} / \mathrm{V}_{\mathrm{S}}\right)=\left(\mathrm{N}_{\mathrm{P}} / \mathrm{N}_{\mathrm{S}}\right) ; \\ & \frac{\text { input (primary) voltage }}{\text { output (secondary) voltage }}=\frac{\text { primary turns }}{\text { secondary turns }} \\ & \frac{V_{P}}{V_{S}}=\frac{n_{P}}{n_{S}} \end{aligned}$	Allow - equation in words with turns ratio shown as a fraction - standard abbreviations :- s, p, in, out, 1, 2 - N, n or T for number of turns - "number of coils" for number of turns Rearrangements also to include turns ratio as a fraction $\left(\mathrm{V}_{\mathrm{S}} / \mathrm{V}_{\mathrm{P}}\right)=\left(\mathrm{N}_{\mathrm{S}} / \mathrm{N}_{\mathrm{P}}\right) \quad$ [equation inverted] $V_{S}=\left(V_{P}\right)\left(N_{S} / N_{P}\right) \quad\left[V_{S}\right.$ as subject] $V_{P}=\left(V_{S}\right)\left(N_{P} / N_{S}\right) \quad\left[V_{P}\right.$ as subject]	1

(ii)	Substitution into correctly rearranged equation; Calculation; e.g. $N_{S}=\frac{(110 \times 1200)}{230}$ 570	Accept - 2 or more s.f. e.g. 574, 573.9 - Answers which round to 570	2
2 (c)	Any 5 from MP1. it steps up or steps down the voltage; MP2. current in (primary) coil produces magnetic field; MP3. the current is changing / has frequency of 50 Hz; MP4. causing a (changing) magnetic field in the core; MP5. the core strengthens the magnetic field; MP6. field lines interact with (secondary) coil; MP7. which induces a voltage in the secondary coils; MP8. transformer won't work with (steady) d.c.	allow flux for magnetic field Allow increases or decreases voltage Allow concentrates for strengthens Allow flux changes in secondary coil Allow induces a current/eq	5

www.igexams.com

Total for question 3 = 10 marks

www.igexams.com

www.igexams.com

Question number	Answer	Notes	Marks
(iii)	Student is right/ wrong - no mark	Red to blue (start either end)	4
	Any two of MP1 idea that the visible spectrum is a sequence, with the end colours identified;	Allow ROYGBIV etc	
	MP2 Colour correctly related to wavelength (e.g. red has longest wavelength); MP3 Colour correctly related to voltage (e.g. blue needs highest voltage);	Wavelength (or frequency) correctly related to voltage $=2$ marks, e.g. f increases with V λ increases with $1 / \mathrm{V}$	2

www.igexams.com

Question number	Answer	Notes	Marks
5 (a)	C Silver		1
(b)	Must be in the correct context Any two from: - negative charge moves or electrons move; - (charge moves through wire) from plate $B /$ to lifting sheet A; - therefore produces unbalanced / net charge on A / B;	Do not award marks for repeat of stem Accept: lifting sheet for A, metal plate for B charge is not enough for first MP A has gained electrons /B has lost electrons for 2 marks Ignore references to 'poles' 'current' Reject ideas about positive charge moving	2

www.igexams.com

Question number	Answer	Notes	Marks
5 (c)	Must be in the correct context Any two from - (top of) dust becomes positive; - negative charge on lifting sheet A attracts dust; - force of attraction > weight of dust;	Ignore unqualified 'opposite charges attract' allow an answer in terms of charge separation e.g. induced charge on dust ('top' positive 'bottom' negative)	2
(d)	Answers must be in the context of the stream of water and charged rod - the water (molecules) have a charge; - opposite charges attract / like charges repel;	do not credit repeat of stem allow (negatively) charged rod attracts (positively) charged water	2
		Total	7

www.igexams.com

\begin{tabular}{|c|c|c|c|c|}
\hline Question number \& Answer \& Accept \& Reject \& Marks \\
\hline \begin{tabular}{l}
6 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\text { voltage = current } \times \text { resistance; }
\] \\
Substitution and rearrangement (of correct equation); \\
Answer given to at least 3 s.f.; \\
e.g. 230 / 22
\[
=10.45(\mathrm{~A}) \quad(\approx 10 \mathrm{~A})
\]
\end{tabular} \& \begin{tabular}{l}
\[
V=I \times R
\] \\
Accept rearrangements \\
I gnore calculations of voltage or resistance
\[
10.5 \mathrm{~A}(=10 \mathrm{~A})
\]
\end{tabular} \& \& 1
2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Any two of: \\
MP1 As a safety device / reduces danger /reduces hazards; \\
MP2 In case of fault / short; \\
MP3 Idea of excessive current; \\
MP4 Prevents (wires or appliance) \\
overheating/fire; \\
MP1 Because total current (in motor and heater) is more than 2 A ; \\
MP2 A 2 A fuse would blow / melt / would need to be replaced / circuit would be broken;
\end{tabular} \& \begin{tabular}{l}
I gnore any reference to electric shock \\
More than 13A \\
Accept reverse arguments
\end{tabular} \& \& 2

2

\hline
\end{tabular}

www.igexams.com

Question number	Answer	Notes	Marks
7	any 5 from: MP1. increased voltage (with step up transformer); MP2. (therefore) reduced current; MP3. current linked to heating; MP4. (therefore) less \{energy / power\} is lost / wasted (in transmission); MP5. reference to $P=I^{2} R$ equation; MP6. example of an efficiency enhancing detail of cables; MP7. example of an efficiency enhancing detail of transformer construction; MP8.step down transformer reduces voltage / increases current;	allow 'steps up voltage' allow $\mathrm{P}=\mathrm{IV}$ if clear that V is the voltage drop across the cables. e.g. good conductor, low resistance, large diameter e.g. low resistance coils, coils wrapped on top of each other, soft iron core, laminated core allow 'steps down voltage'	5

