Mains Electricity

Mark Scheme 3

Level	IGCSE(9-1)
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2P)
Topic	Electricity
Sub-Topic	Mains Electricity
Booklet	Mark Scheme 3

Time Allowed: 82 minutes

Score: /68

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	Е	U
>85%	775%	70%	60%	55%	50%	<50%

	Question number		Answer	Notes	Marks
1	а				1
	b	i	Any two ideas from: MP1. it acts as water bath; MP2. gives more gradual heating or cooling OR gives (easier/better) control of	allow water distributes temperature (more) evenly /RA for air	2
			temperature; MP3. protects the thermistor against direct heating/prevents intense heating;	very high temperature	
		ii	B; in parallel across the thermistor in series with the thermistor		1
	С	İ	ignore orientation of the graph suitable scales marked on both axes (both axes labelled with quantity and upoints within ± ½ small square;;		4
		ii iii	anomalous point at 60, 2350; LOBF; should go through 60, 1750 approx no obvious abrupt changes of gradient		1

	estion mber	Answer	Notes	Marks
2 ((a) (i)	input power = output power; $ OR $	A dimensionally correct power equation is required. Accept - Power in = Power out $I_1V_1 = I_2V_2$ input power = output power $V_PI_P = V_SI_S$	1
	(ii)	Substitution in correctly rearranged equation; Calculation; e.g. $I_s = \frac{(2 \times 230)}{110}$ 4 (A)	Full marks for bald correct answer Accept more s.f. e.g. 4.2, 4.18, 4.1818	2
	(b) (i)	$\frac{\text{input (primary) voltage}}{\text{output (secondary) voltage}} = \frac{\text{primary turns}}{\text{secondary turns}}$ $\frac{V_p}{V_S} = \frac{n_p}{n_S}$	 Allow equation in words with turns ratio shown as a fraction standard abbreviations: - s, p, in, out, 1, 2 N, n or T for number of turns "number of coils" for number of turns Rearrangements also to include turns ratio as a fraction (V_S/V_P) = (N_S/N_P) [equation inverted] V_S = (V_P) (N_S/N_P) [V_S as subject] V_P = (V_S) (N_P/N_S) 	1

(ii)	Substitution into correctly rearranged equation; Calculation; e.g. $N_S = \frac{(110 \times 1200)}{230}$	Accept • 2 or more s.f. e.g. 574, 573.9 • Answers which round to 570	2
2 (c)	 Any 5 from MP1. it steps up or steps down the voltage; MP2. current in (primary) coil produces magnetic field; MP3. the current is changing /has frequency of 50 Hz; MP4. causing a (changing) magnetic field in the core; MP5. the core strengthens the magnetic field; MP6. field lines interact with (secondary) coil; MP7. which induces a voltage in the secondary coils; MP8. transformer won't work with (steady) d.c. 	Allow flux for magnetic field Allow increases or decreases voltage Allow concentrates for strengthens Allow flux changes in secondary coil Allow induces a current/eq	5

(Total for Question 2 = 11 marks)

Question number			Answer	Notes	Marks
3 (a)	(i	i)	Power (rating) or watt(s);		2
			Rate of energy transfer / joule per second / J/s;	Ignore equation from p2: energy (transferred) time (taken)	
	(ii)		Any two of		2
			MP1 Idea of a fault causing a hazard; MP2 Idea that current goes to Earth / not to user;	Ignore: current surge, fire Allow: • prevents electrocution / shock • flow of charge as current	
				 current to ground Ignore: electricity / energy goes to earth 	
			MP3 Idea of fuse action, e.g. blows /melts / breaks circuit;	goos to our tri	
			MP4 idea of a low resistance path;	Allow case at earth potential	

(b) (i)	Agree / disagree - no mark Any three of		3
	MP1 Statement of an appropriate equation e.g. power = current x voltage;	Allow abbreviation and rearrangements e.g. P=IV, I=P/V	
	MP2 At least one appropriate current value calculated, e.g. 2.92 (A) or 0.13 (A);	Ignore s.f. 30 ÷ 230 = 0.13 (A) 70 ÷ 24 = 2.9 (A) Allow 70 ÷ 230 = 0.30 (A)	
	MP3 Idea that fuse rating must be more than working current;	Allow reverse arguments, e.g. "lower value fuse would melt"	
	MP4 EITHER Idea that 2.92 A is close to 3A, making 3A fuse a poor choice for soldering iron 'B';		
	OR Idea that 3A is much larger than 0.13 A, making 3A fuse a poor choice for soldering iron 'A'	Allow ecf from incorrect calculation	

(ii)	Any three of	May be shown on a labelled diagram lgnore equations	3
	MP1 primary AND secondary (coils);	Allow input and output (coils)	
	MP2 (soft) iron core;	Ignore: magnet	
	MP3 primary/input (coil) has more turns;	 Allow: reverse argument clear indication of relative turns on diagram (judge by eye) appropriate numbers 	
	MP4 further structural detail e.g. insulated wire, core laminations;		

Total for question 3 = 10 marks

	Question number		Answer		Notes	Marks	
4	(a)	(i)	C (the same speed in free space)				1
		(ii)	B (there must be a current in the circuit)				1
	(b)	(i)	compo	•	e LED;	Ignore a line through the voltmeter symbol	2
		(ii)	Linear least h Plottir 5 bars	nalf the grid; ngignore order o correctly plotted;; 3 bars correctly pl	ngest bar occupies at f bars	voltage in V (or V/V) AND all bars (or points) labelled lgnore orientation Allow non-zero origin Bar length plotted to nearest ½ small square ALL data plotted	4
			Co	olour of light from LED	Minimum voltage in V	correctly as floating	
				Red	1.7	"x's" gets only one	
				Blue	3.6	mark for plotting	
				Yellow	2.1	Reject both plotting	
				Orange	2.0	marks if a line graph is	
				Green	3.0	drawn (only scale and axes marks are available in this case)	
							2

Question number		Answer	Notes	Marks
(iii)	Any tv MP1 ic	nt is right/wrong - no mark vo of lea that the visible spectrum is a sequence, he end colours identified;	Red to blue (start either end) Allow ROYGBIV etc	4
	red ha	olour correctly related to wavelength (e.g. as longest wavelength); olour correctly related to voltage (e.g. blue highest voltage);	Wavelength (or frequency) correctly related to voltage = 2 marks, e.g. f increases with V λ increases with 1/V	2

Question number	Answer	Notes	Marks
5 (a)	C Silver		1
(b)	Must be in the correct context Any two from:	Do not award marks for repeat of stem Accept: Iifting sheet for A, metal plate for B	
	 negative charge moves or electrons move; (charge moves through wire) from plate B / to lifting sheet A; 	charge is not enough for first MP A has gained electrons /B	
	therefore produces unbalanced /net charge on A/B;	has lost electrons for 2 marks Ignore references to 'poles' 'current' Reject ideas about positive charge moving	2

Question number	Answer	Notes	Marks
5 (c)	Must be in the correct context Any two from	Ignore unqualified 'opposite charges attract'	
	 (top of) dust becomes positive; negative charge on lifting sheet A attracts dust; force of attraction > weight of dust; 	allow an answer in terms of charge separation e.g. induced charge on dust ('top' positive 'bottom' negative)	2
(d)	Answers must be in the context of the stream of water and charged rod • the water (molecules) have a charge; • opposite charges attract / like charges repel;	do not credit repeat of stem allow (negatively) charged rod attracts (positively) charged water	2
		Total	7

Question number	Answer	Accept	Reject	Marks
6 (a) (i)	voltage = current x resistance;	V = I x R Accept rearrangements		1
(ii	Substitution and rearrangement (of correct equation); Answer given to at least 3 s.f.; e.g. 230 / 22 = 10.45 (A) (≈ 10 A)	Ignore calculations of voltage or resistance 10.5 A (= 10 A)		2
(b) (i)	Any two of: MP1 As a safety device / reduces danger /reduces hazards; MP2 In case of fault / short; MP3 Idea of excessive current; MP4 Prevents (wires or appliance) overheating/fire;	Ignore any reference to electric shock More than 13A		2
(ii	MP1 Because total current (in motor and heater) is more than 2A; MP2 A 2 A fuse would blow / melt / would need to be replaced / circuit would be broken;	Accept reverse arguments		

Total 7 marks

Question number	Answer	Notes	Marks
7	any 5 from: MP1.increased voltage (with step up transformer);	allow 'steps up voltage'	5
	MP2. (therefore) reduced current;		
	MP3. current linked to heating;		
	MP4. (therefore) less { energy / power} is lost / wasted (in transmission);		
	MP5. reference to P=I ² R equation;	allow P=IV if clear that V is the voltage drop across the cables.	
	MP6. example of an efficiency enhancing detail of cables;	e.g. good conductor, low resistance, large diameter	
	MP7. example of an efficiency enhancing detail of transformer construction;	e.g. low resistance coils, coils wrapped on top of each other, soft iron core, laminated core	
	MP8. step down transformer reduces voltage / increases current;	allow 'steps down voltage'	

Question number			Answer	Accept	Reject	Marks
8	(a)		В			1
	(b)	(i)	Word equation or $V_p I_p = V_s I_s$;	$V_p/V_s = I_s/I_p \text{ or } V_s/V_p$ = I_p/I_s or $I_1V_1 = I_2V_2$		1
		(ii)	Correct equation substituted OR rearranged; Answer; Vp/Vs = Is/Ip or Vs/Vp = Ip/Is	Bald answer;;		2
			e.g. $230 \times 0.25 = 12 \times I_s$, so $I_s = (230 \times 0.25) \div 12 = 4.8 (A)$	4.79 (A) , 4.792 (A)		
	(c)		Two of MP1 Idea of energy / power lost; MP2 Idea of efficiency ≠ 100%; MP3 Idea of less available energy/power/voltage/current; MP4 Idea of resistance increasing (with temperature);			2
					Total	6