Energy and Voltage in circuits Mark Scheme 1

Level	IGCSE(9-1)
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1P)
Topic	Electricity
Sub-Topic	Energy and Voltage in circuits
Booklet	Mark Scheme 1

Time Allowed:	$\mathbf{7 4}$ minutes
Score:	/61
Percentage:	/100

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	775%	70%	60%	55%	50%	$<50 \%$

www.igexams.com

Question number	Answer	Notes	Marks
1 (a) (i) (ii)	Voltmeter connected in parallel with a component; component is LDR; measure current / take current reading; divide voltage (reading) by current (reading);	not in parallel with wire accept - number of amps for current - p.d. or number of volts for voltage - $\mathrm{R}=\mathrm{V} / \mathrm{I}$ Ignore triangle mnemonics	2 2
(b) (i) (ii) (iii)	B - the diameter of the hole; C - the distance from the card to the LDR; Any one of Move ruler to cover half the hole/halfway down the hole; Draw guide lines; Use set square;	idea of measuring across/over the diameter at right angles to ruler Placed against ruler I gnore: move ruler nearer the hole/start from 0 on the ruler	1 1 1

| Question
 number | Answer | Notes | Marks |
| :---: | :--- | :--- | :--- | :---: |
| 1(c) (i) suitable scales; Must use $>$ half
 width and half
 height of grid
 units on axis labels
 ignore orientation
 of graph
 to nearest $1 / 2$
 square, up to two
 marks available for
 this, -1 each error
 reject dot to dot
 allow a reasonably
 smooth curve,
 points should be
 evenly distributed
 about the line
 (ii) line of best fit; 1 | | | |

diameter $/ \mathrm{mm}$	resistance $/ \Omega$
8	1050
10	890
15	640
20	490
23	430
30	340

www.igexams.com

| (iii) $\|$MP1 \quad Idea of an inverse relationship;
 OR
 Pattern sentence linking resistance and
 diameter; | ignore 'negative
 correlation' | e.g.
 "the bigger the
 diameter, the
 lower the
 resistance"
 allow exponential
 decrease | |
| :--- | :--- | :--- | :--- | :--- |

Total 14 marks
www.igexams.com

Question number	Answer	Notes	Marks
$2 \text { (a) (i) }$ (ii)	$\begin{aligned} & P=I \times V ; \\ & \text { substitution and rearrangement; } \\ & \text { evaluation; } \\ & \text { e.g. } \\ & (1=) 110 / 230 \\ & (I=) 0.48 \text { (A) } \end{aligned}$	accept standard symbols or in words or rearranged allow 0.5, 0.47826 (A) condone $0.47,0.4782$	1 2
(b) (i) (ii) (iii)	any suitable suggestion; e.g. carries a high(er) current has low(er) resistance L or live; any suitable suggestion; e.g. double insulated does not have a metal case / has a plastic case	ignore references to cable overheating/melting case is not a conductor / is an insulator	1 1 1

www.igexams.com

(c)	substitution into a suitable equation; time in correct units; evaluation; e.g. ($\mathrm{E}=1 \times \mathrm{V} \times \mathrm{t}$) $(E=) 0.17 \times 230 \times 55 \ldots \ldots1$ mark ($\mathrm{E}=$) $0.17 \times 230 \times 55 \times 60 . .2$ marks ($\mathrm{E}=$) 130000 (J)..................... 3 marks OR ($\mathrm{E}=\mathrm{P} \times \mathrm{t}$) ($\mathrm{E}=$) $40 \times 55 \ldots \ldots1$ mark ($\mathrm{E}=$) $40 \times 55 \times 60 \ldots \ldots \ldots2$ marks ($\mathrm{E}=$) 130000 (J)................... 3 marks	no mark for the equation as given in the paper allow if x60 / 3300 seen anywhere in working 129030 (J) allow 131835 for use of $V=235 \mathrm{~V}$ 132000(J) total marks $=9$	3

Question number	Answer	Notes	Marks
3 (a) (i)	Voltmeter connected in parallel with any circuit component; Component chosen is the thermistor;	Ignore a line through the voltmeter symbol	2
(ii)	(iii) (because voltage is) a controlled variable;	Allow idea of fair test Any one of - MP1. Idea of adjustment (of current or circuit resistance); MP2. To control the current;	1

www.igexams.com

www.igexams.com

Question number	Answer	Notes	Marks
4 (a)	mark each of these independently: MP1. a resistor in series with the lamp only; MP2. a second lamp in parallel with the first lamp; MP3. a voltmeter that measures the voltage across the resistor; MP4. an ammeter that measures the total current in the circuit;	circuit symbols used must be correct (no square voltmeter/ammeter etc.)	4
(b) (i)	labels on axes including units; scales on axes; plotting;	axes can be either way round must occupy >50\% in each direction -1 for each error	4
(ii)	$\mathrm{I}=0.4, \mathrm{~V}=4.5$ clearly indicated;		1

www.igexams.com

(iii)	Suitable line of best fit; Curvent (A)	Voltage in \mathbf{V} 1.0 2.5 3.0 4.5 5.0 6.0	Current in A 0.10 0.25 0.30 0.40 0.50 0.60	1
(iv)	voltage = current \times resistance;	in words or sta	ard symbols	1
(v)	substitution into correct equation using any suitable pair of values taken from the graph line or table; evaluation of $\mathrm{R}=10(\Omega)$;	allow (0.1,1),	6,6) etc	2

www.igexams.com

Question number	Answer	Notes	Marks
5 a	MP1. series circuit containing lamp and some form of power supply; MP2. ammeter in series with lamp; MP3. voltmeter in parallel across lamp; MP4. variable resistor in series OR use of variable power supply;	```incorrect symbols or substantial gaps =- 1 ONCE allow either symbol for lamp ignore other components e.g. switch```	4
b i	idea that gradient changes; e.g. voltage increases more rapidly than the current	look for a rate change expressed in student terms Accept - line is curved - not a straight line - V is not proportional to I	1
	MP1. Lamp heats up; MP2. Greater chance of electron collisions; MP3. (hence) resistance increases;	do not award marks for a description of the shape of the graph	3

(Total for question $5=8$ marks)

www.igexams.com

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\[
6 \quad \text { (a) } 1
\] \\
ii
\end{tabular} \& \begin{tabular}{l}
MP1 Any circuit including correct circuit symbols for \\
- battery /cell / d.c. power supply \\
- ammeter \\
- voltmeter \\
MP2 ammeter clearly measures current through the wire; \\
MP3 voltmeter clearly across wire; \\
Idea of measuring current through the wire; \\
Idea of measuring voltage across the wire; \\
Idea of a range of values (of I and V); \\
e.g. alter variable resistor OR repeat for different voltages
\end{tabular} \& \begin{tabular}{l}
ignore other components for MP1 \\
allow even if voltmeter in series with ammeter allow circuit line drawn through meter allow voltmeter across a section of the test wire
\end{tabular} \& 3

3

\hline | (b) i |
| :--- |
| ii |
| (c) |
| i |
| ii | \& | any one of resistance changes (with temperature) ; wire gets hot and melts/burns/catches fire/dangerous; |
| :--- |
| V proportional to I only at constant temperature; Ohms Law is only true if temperature constant; any one of putting the wire in a water bath ; taking the reading quickly; switching off between readings; using only small currents; voltage $=$ current \times resistance ; |
| horizontal line above axis; | \& | Reject incorrect relationship between R and Θ Ignore damage to wire Reject insulating the wire |
| :--- |
| Allow to return to room temperature |
| Allow $\mathrm{V}=\mathrm{I} \times \mathrm{R}$ and rearrangements | \& 1

1
1

1
1

\hline
\end{tabular}

