Energy and Voltage in circuits Mark Scheme 1

A*	A	В	С	D	E	U
Grade Boundaries:						
Percentage:		/100				
Score:		/61				
Time Allo	wed:	74 minut	tes			
Booklet				Mark Scheme	1	
Sub-Topic			Energy and Vo	oltage in circu	iits	
Торіс				Electricity		
Module				Double Awar	d (Paper 1P)	
Exam Bo	ard			Edexcel IGCSE		
Subject			Physics			
Level				IGCSE(9-1)		

Question number	Answer	Notes	Marks
1 (a) (i)	Voltmeter connected in parallel with a component; component is LDR;	not in parallel with wire	2
(ii)	measure current / take current reading; divide voltage (reading) by current (reading);	 accept number of amps for current p.d. or number of volts for voltage R = V/I Ignore triangle mnemonics 	2
(b) (i)	B – the diameter of the hole;		1
(ii)	C – the distance from the card to the LDR;		1
(iii)	Any one of - Move ruler to cover half the hole/halfway down the hole; Draw guide lines; Use set square;	idea of measuring across/over the diameter at right angles to ruler Placed against ruler Ignore: move ruler nearer the hole/start from 0 on the ruler	1

Continued

Question number	Answer	Notes	Marks
1 (c) (i)	suitable scales;	Must use > half width and half height of grid	4
	axes labelled;	units on axis labels ignore orientation	
	Plotting of points;;	of graph to nearest ½ square, up to two marks available for	
(ii)	line of best fit;	this, -1 each error reject dot to dot allow a reasonably smooth curve, points should be evenly distributed about the line	1
	1200 1000 resistance 800	diameter /mm resistance /Ω 8 1050 10 890	

(iii)	MP1	Idea of an inverse relationship; OR	ignore 'negative correlation'	2
		Pattern sentence linking resistance and diameter;	e.g. "the bigger the diameter, the lower the resistance"	
	MP2	Idea of a non-linear relationship;	allow exponential decrease	
			Total 11 marks	-

Total 14 marks

Question number	Answer	Notes	Marks
2 (a) (i)	$P = I \times V;$	accept standard symbols or in words or rearranged	1
(ii)	substitution and rearrangement; evaluation;		2
	e.g. (I =) 110/230 (I =) 0.48 (A)	allow 0.5, 0.47826 (A) condone 0.47, 0.4782	
(b) (i)	any suitable suggestion; e.g. carries a high(er) <u>current</u> has low(er) <u>resistance</u>	ignore references to cable overheating/melting	1
(ii)	L or live;		1
(iii)	any suitable suggestion; e.g. double insulated does not have a metal case / has a	case is not a	1
	plastic case	conductor / is an insulator	

Г	<i>.</i>			
	(c)	substitution into a suitable equation;	no mark for the	3
			equation as given in the paper	
		time in correct units;	allow if x60 / 3300	
			seen anywhere in	
			working	
		evaluation;		
		$\begin{array}{l} e.g.\\ (E = I \times V \times t) \end{array}$		
		$(E =) 0.17 \times 230 \times 551 mark$		
		(E =) 0.17 x 230 x 55 x 602 marks		
		(E =) 130 000 (J)3 marks	129030 (J)	
		OR	allow 131 835 for use of V = 235V	
		OR	01 v = 235 v	
		$(E = P \times t)$		
		(E =) 40 x 551 mark		
		$(E =) 40 \times 55 \times 602$ marks		
		(E =) 130 000 (J)3 marks	132000(J)	
			total marks = 9	
L				

	Question number		Answer	Notes	Marks
3	(a) (i)	Voltmeter connected in parallel with any circuit component; Component chosen is the thermistor;	Ignore a line through the voltmeter symbol	2
		(ii)	(because voltage is) a controlled variable;	Allow idea of fair test	1
		(iii)	Any one of - MP1. Idea of adjustment (of current or circuit resistance); MP2. To control the current;		1

(b)	 Any three of - references to the data: MP1. (yes it works) when the temps are high, the current almost matches the temperature; MP2. (no it's not OK) when the temps are lower, the current value does not match the temperature; MP3. It is only right at 10 (and 100); Practicality ideas: MP4. The current cannot be negative when the temperature is negative; MP5. Idea that Voltage will not be 	however expressed e.g. About t same from 80 °C to 100 °C; e.g. not equal at 20mA 20 °C	3
	constant/ voltage has to be adjusted to keep it constant; line ideas MP6. Line/ graph is curved /eq; MP7. Line/ graph does not pass through the origin;	allow (graph shows that) current not directly proportional to temperature allow 0,0	

Total 7 marks

	Question number)	Answer	Notes	Marks
4	(a)		mark each of these independently:	circuit symbols used must be correct (no square	4
			MP1. a resistor in series with the lamp only;	voltmeter/ammeter etc.)	
			MP2. a second lamp in parallel with the first lamp;		
			MP3. a voltmeter that measures the voltage across the resistor ;		
			MP4. an ammeter that measures the total current in the circuit;		
	(b) ((i)	labels on avec including units:	avec can be either way round	4
	(b) ((i)	labels on axes including units;	axes can be either way round	4
			scales on axes;	must occupy >50% in each direction	
			plotting;;	-1 for each error	
	(ii)	I = 0.4, V = 4.5 clearly indicated;		1

Current (A)	1.0	0.10	
		0.10	
	2.5	0.25	
	3.0	0.30	
0.5	4.5	0.40	
	5.0	0.50	
СЧ (%)	6.0	0.60	
0.0			
0.2			
voltage = current x resistance;	in words or star	ndard symbols	1
substitution into correct equation using any suitable pair of values taken from the graph line or table; evaluation of R = 10 (Ω);	allow (0.1,1), ((0.6,6) etc	2
	<pre>current x resistance;</pre> <pre>voltage = current x resistance;</pre>	Substitution into correct equation using any suitable pair of values taken from the graph line or table; allow (0.1,1), (0)	5.0 0.50 6.1 0.60 0.1 0.1 0.1 <td< th=""></td<>

Total 13 marks

Question number	Answer	Notes	Marks
5 a	 MP1. series circuit containing lamp and some form of power supply; MP2. ammeter in series with lamp; MP3. voltmeter in parallel across lamp; MP4. variable resistor in series OR use of variable power supply; 	incorrect symbols or substantial gaps =- 1 ONCE allow either symbol for lamp ignore other components e.g. switch	4
bi	idea that gradient changes; e.g. voltage increases more rapidly than the current	 look for a rate change expressed in student terms Accept line is curved not a straight line V is not proportional to I 	1
ii	MP1. Lamp heats up;MP2. Greater chance of electron collisions;MP3. (hence) resistance increases;	do not award marks for a description of the shape of the graph	3

(Total for question 5 = 8 marks)

Question number	Answer	Notes	Marks
6 (a ₎ I ii	 MP1 Any circuit including correct circuit symbols for battery /cell / d.c. power supply ammeter voltmeter ; MP2 ammeter clearly measures current through the wire; MP3 voltmeter clearly across wire; Idea of measuring current through the wire; Idea of measuring voltage across the wire; Idea of a range of values (of I and V); e.g. alter variable resistor OR repeat for different voltages 	ignore other components for MP1 allow even if voltmeter in series with ammeter allow circuit line drawn through meter allow voltmeter across a section of the test wire	3
(b) i ii (c) i	<pre>any one of resistance changes (with temperature) ; wire gets hot and melts/burns/catches fire/dangerous; V proportional to I only at constant temperature; Ohms Law is only true if temperature constant; any one of putting the wire in a water bath ; taking the reading quickly; switching off between readings; using only small currents; voltage = current × resistance ;</pre>	Reject incorrect relationship between R and Θ Ignore damage to wire Reject insulating the wire Allow to return to room temperature Allow V = I × R and rearrangements	1 1 1
ii	horizontal line above axis;		1

Iotal IO
