## Energy and Voltage in circuits <br> Mark Scheme 4

| Level | IGCSE(9-1) |
| :--- | :--- |
| Subject | Physics |
| Exam Board | Edexcel IGCSE |
| Module | Single Award (Paper 2P) |
| Topic | Electricity |
| Sub-Topic | Energy and Voltage in circuits |
| Booklet | Mark Scheme 4 |


| Time Allowed: | 69 minutes |
| :--- | :--- |
| Score: | $/ 57$ |
| Percentage: | $/ 100$ |

Grade Boundaries:

| A* | A | B | C | D | E | U |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $>85 \%$ | $775 \%$ | $70 \%$ | $60 \%$ | $55 \%$ | $50 \%$ | $<50 \%$ |

www.igexams.com

| Question <br> number | Answer | Notes | Marks |
| :---: | :--- | :--- | :---: |
| 1 (a) (i) | step-down (transformer); | 1 |  |
| (ii) | MP1. soft material loses magnetism <br> quickly / easily; | ignore unqualified <br> references to losing <br> magnetism | 2 |

## www.igexams.com

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| (b) (i) | input / primary voltage $=$ primary turns output / secondary voltage secondary turns | allow <br> - equa ion in words with turns ratio shown as a fraction <br> - sta dard abbreviations:-s, p, in, out, 1, 2 <br> - N or n for number of turns (condone T for number of turns) <br> - "numb r of coils" for number of turns <br> rearrangements also to include turns ratio as a fraction $\left(\mathrm{V}_{\mathrm{s}} / \mathrm{V}_{\mathrm{p}}\right)=\left(\mathrm{N}_{\mathrm{s}} / \mathrm{N}_{\mathrm{p}}\right)$ [equation inverted] $\mathrm{V}_{\mathrm{s}}=\left(\mathrm{V}_{\mathrm{p}}\right)\left(\mathrm{Ns} / \mathrm{N}_{\mathrm{p}}\right)[\mathrm{Vs}$ as subject] $\mathrm{V}_{\mathrm{p}}=\left(\mathrm{V}_{\mathrm{s}}\right)\left(\mathrm{N}_{\mathrm{p}} / \mathrm{Ns}_{\mathrm{s}}\right)\left[\mathrm{V}_{\mathrm{p}}\right.$ as subject] | 1 |
| (ii) | substitution into a correct equation; evaluation (including rearrangement); <br> e. $\begin{aligned} & 44 / V=520 / 30 \\ & (\mathrm{~V}=) 2.5(\mathrm{~V}) \end{aligned}$ | allow $3,2.53,2.54,2.538$ | 2 |

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(c) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
idea of a (frequency) limit / range to (human) hearing OR (frequency) is \{too high / ultrasound\}; mention of upper limit as 20000 Hz ; \\
conversion of unit; \\
substitution and evaluation; \\
e.
\[
\begin{aligned}
\& \mathrm{t}=1.5 \mathrm{~ms}=0.0015 \mathrm{~s} \\
\& (\mathrm{f}=) 1 / 0.0015=670(\mathrm{~Hz})
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
ignore references to lower limit \\
allow 20 kHz ignore references to lower limit \\
allow 1000 or 0.001 in working, if no other mark can be given \\
allow correct rounding only e.g. 700, 667, 666.7, 666.6 (recurring) \\
1 mark max for POT error e.g. 0.67, 6.7, 67 etc.
\end{tabular} \& 2

2 <br>
\hline
\end{tabular}

www.igexams.com


## www.igexams.com

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| (b) | Any 5 from <br> MP1. it steps up or steps down the voltage; <br> MP2. current in (primary) coil produces magnetic field; <br> MP3. the current is changing / has frequency of 50 Hz; <br> MP4. causing a (changing) magnetic field in the core; <br> MP5. the core strengthens the magnetic field; <br> MP6. field lines interact with (secondary) coil; <br> MP7. which induces a voltage in the secondary coils; <br> MP8. transformer won't work with (steady) d.c. | allow flux for magnetic field <br> Allow increases or decreases voltage <br> Allow concentrates for strengthens <br> Allow flux changes in secondary coil <br> Allow induces a current/eq <br> NB do not credit repeat of stem | 5 |

## www.igexams.com



## www.igexams.com

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 3 (d) (i) <br> (ii) | $\text { voltage = current } \times \text { resistance; }$ <br> Substitution into correctly rearranged equation; Conversion between amps and milliamps; Calculation yielding value correct to at least 2 s.f.; e. $\begin{aligned} & I=5.9 \div 680 \\ & =0.00868(\mathrm{~A}) \\ & =8.7(\mathrm{~mA}) \end{aligned}$ | Accept rearrangements and symbols <br> e.g. current $=$ voltage $\div$ resistance, $V=I R$, $\mathrm{R}=\mathrm{V} / \mathrm{I}$ <br> Accept $\times 1000$ in calculation <br> Allow 1 mark max if response is only a successful reverse argument leading to 5.8 V or 5.78 V | 1 3 |

## www.igexams.com

| Question Number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 4 (a) (i) <br> (ii) | input power = output power; <br> OR $I_{p} V_{p}=I_{s} V_{s} ;$ <br> OR $I_{\text {in }} V_{\text {in }}=I_{\text {out }} V_{\text {out }}$ <br> Substitution in correctly rearranged equation; Calculation; <br> e.g. $\begin{aligned} & \mathrm{I}_{\mathrm{s}}=\frac{(2 \times 230)}{110} \\ & 4(\mathrm{~A}) \end{aligned}$ | A dimensionally correct power equation is required. <br> Accept - <br> Power in = Power out $\mathrm{I}_{1} \mathrm{~V}_{1}=\mathrm{I}_{2} \mathrm{~V}_{2}$ <br> input power $=$ output power $V_{\mathrm{P}} I_{\mathrm{P}}=V_{\mathrm{S}} I_{\mathrm{S}}$ <br> Full marks for bald correct answer <br> Accept more s.f. e.g. 4.2, 4.18, 4.1818 | 1 |
| (b) (i) | $\begin{aligned} & \left(\mathrm{V}_{\mathrm{P}} / \mathrm{V}_{\mathrm{S}}\right)=\left(\mathrm{N}_{\mathrm{P}} / \mathrm{N}_{\mathrm{S}}\right) ; \\ & \frac{\text { input (primary) voltage }}{\text { output (secondary) voltage }}=\frac{\text { primary turns }}{\text { secondary turns }} \\ & \frac{V_{P}}{V_{S}}=\frac{n_{P}}{n_{S}} \end{aligned}$ | Allow <br> - equation in words with turns ratio shown as a fraction <br> - standard abbreviations :- s, p, in, out, 1, 2 <br> - $\mathrm{N}, \mathrm{n}$ or T for number of turns <br> - "number of coils" for number of turns <br> Rearrangements also to include turns ratio as a fraction <br> $\left(V_{S} / V_{P}\right)=\left(N_{S} / N_{P}\right) \quad$ [equation inverted] <br> $V_{S}=\left(V_{P}\right)\left(N_{S} / N_{P}\right) \quad\left[V_{S}\right.$ as subject] <br> $\mathrm{V}_{\mathrm{P}}=\left(\mathrm{V}_{\mathrm{S}}\right)\left(\mathrm{N}_{\mathrm{P}} / \mathrm{N}_{\mathrm{S}}\right) \quad\left[\mathrm{V}_{\mathrm{P}}\right.$ as subject $]$ | 1 |

## www.igexams.com

| (ii) | Substitution into correctly rearranged equation; Calculation; <br> e.g. $N_{S}=\frac{(110 \times 1200)}{230}$ $570$ | Accept <br> - 2 or more s.f. e.g. $574,573.9$ <br> - Answers which round to 570 | 2 |
| :---: | :---: | :---: | :---: |
| 4 (c) | Any 5 from <br> MP1. it steps up or steps down the voltage; <br> MP2. current in (primary) coil produces magnetic field; <br> MP3. the current is changing / has frequency of 50 Hz; <br> MP4. causing a (changing) magnetic field in the core; <br> MP5. the core strengthens the magnetic field; <br> MP6. field lines interact with (secondary) coil; <br> MP7. which induces a voltage in the secondary coils; <br> MP8. transformer won't work with (steady) d.c. | allow flux for magnetic field <br> Allow increases or decreases voltage <br> Allow concentrates for strengthens <br> Allow flux changes in secondary coil <br> Allow induces a current/eq | 5 |

(Total for Question $5=11$ marks)

## www.igexams.com



## www.igexams.com



Total for question $6=10$ marks
www.igexams.com

| Question <br> number | Answer | Notes | Marks |
| :---: | :--- | :--- | ---: |
| 6 (a) | $\mathrm{C}(132000 \mathrm{~V}) ;$ |  | 1 |
| (b) | B (efficiency of transmission); |  | 1 |
| (c) | C (transformer); |  | 1 |

Total 3 marks

