www.igexams.com

Energy Transfers
 Mark Scheme 4

Level	IGCSE(9-1)
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2P)
Topic	Energy resources and energy transfers
Sub-Topic	Energy Transfers
Booklet	Mark Scheme 4

Time Allowed:	53 minutes
Score:	$/ 44$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	75%	70%	60%	55%	50%	$<50 \%$

www.igexams.com

Total 7 marks

www.igexams.com

www.igexams.com

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
3 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
Work done = force \(\times\) distance moved; \\
Substitution into correct equation; \\
Calculation; \\
e.g. \(13 \times 110\) \\
1430 (J) \\
Same response as for 3 (a)(ii)
\end{tabular} \& \begin{tabular}{l}
Allow W = F x d and rearrangements \\
Correct answer without working scores 2 marks \\
1430 (J) or ecf
\end{tabular} \& 1
2

1

\hline (b) \& | Any two of - |
| :--- |
| MP1 Idea that GPE depends on height |
| OR |
| Statement that GPE $=\mathrm{mgh}$; |
| MP2 Idea that h is reduced; |
| MP3 I dea that centre of gravity (is now) lower; | \& Allow centre of mass for centre of gravity \& 2

\hline | (c) (i) |
| :--- |
| (ii) |\& ``

Moment = force }\times\mathrm{ (perpendicular)
distance (from the pivot);
Calculate given moment;
Equate moments;
Calculation;
e.g.
(150 x 0.32)=48 for
one mark
150\times0.32=F\times0.87 for
two marks
F(= 150 x 0.32/0.87) = 55(N) for
three marks
```&```
Allow moment = F
x d and
rearrangements
If no other mark
gained, allow a
statement that
"clockwise moment
=
anticlockwise
moment" for one mark

$$
55.172(\mathrm{~N})
$$

``` & 1
3 \\
\hline
\end{tabular}

\section*{www.igexams.com}
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline \begin{tabular}{l}
4 (a) \\
(i) \\
(ii) \\
(iii)
\end{tabular} & \begin{tabular}{l}
\[
\text { work done }=\text { force } \times \text { distance (moved); }
\] \\
substitution; \\
evaluation; \\
e.g. (work \(=\)) \(140 \times 39\) \\
5500 (J) \\
same answer as 5(a)(ii)
\end{tabular} & \begin{tabular}{l}
Accept correct symbols e.g.
\[
\mathrm{W}=\mathrm{F} \times \mathrm{d}
\]
\[
\mathrm{W}=\mathrm{F} \times \mathrm{s}
\]
\[
5460
\] \\
allow 'the same'
\end{tabular} & 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii)
\end{tabular} & \begin{tabular}{l}
X in line with the weight arrow and vertically between the tail of the arrow and the top of the wheelbarrow (not including the logs); \\
moment \(=\) force \(\times(\) perpendicular \()\) distance (from pivot); \\
principle of moments (stated or implied); total distance hand to pivot calculated; \\
substitution showing either correct moment (or both); \\
final rearrangement and evaluation; \\
e.g. (total) clockwise (moment) \(=\) (total) anticlockwise (moment) (distance) \(=0.6+0.8=1.4 \mathrm{~m}\) \(470 \times 0.6=F \times 1.4\)
\[
F=470 \times 0.6 / 1.4=200(N)
\]
\end{tabular} & \begin{tabular}{l}
judge alignment with weight arrow by eye \\
condone \\
\(\mathrm{M}=\mathrm{F} \times \mathrm{d}\) \\
\(M=F \times s\) \\
accept 1.4 or \(0.6+0.8\) seen in working accept 282 seen in working \\
allow 201, 201.43 \\
350, 352, 353, \\
352.5 gets 2 marks
\end{tabular} & 1 \\
\hline
\end{tabular}

\section*{www.igexams.com}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question number} & Answer & Notes & Marks \\
\hline 5 & a & & B; & & 1 \\
\hline & & & E; & & 1 \\
\hline & b & i & \(p=m . v\) & in words or accepted symbols do not accept ' \({ }^{\prime}\) ' for momentum & 1 \\
\hline & & ii & ```
substitution;
evaluation;
e.g.
900\times15
14000
unit = kg m/s OR N s;
``` & \begin{tabular}{l}
13500 \\
Independent \\
Allow \\
\(\mathrm{kg} \mathrm{ms}^{-1}\)
\end{tabular} & 3 \\
\hline & & iii & \(\mathrm{KE}=1 / 2 \mathrm{~m} \cdot \mathrm{v}^{2} ;\) & in words or accepted symbols allow speed for velocity & 1 \\
\hline & & iv & substitution; evaluation; e.g.
\[
\begin{aligned}
& 0.5 \times 900 \times 15^{2} \\
& 100000(\mathrm{~J})
\end{aligned}
\] & \[
\begin{aligned}
& 101250 \\
& \text { Allow } \\
& 101000
\end{aligned}
\] & 2 \\
\hline & & & & & \\
\hline & & & & total \(=9 \mathrm{~m}\) & \\
\hline
\end{tabular}```

