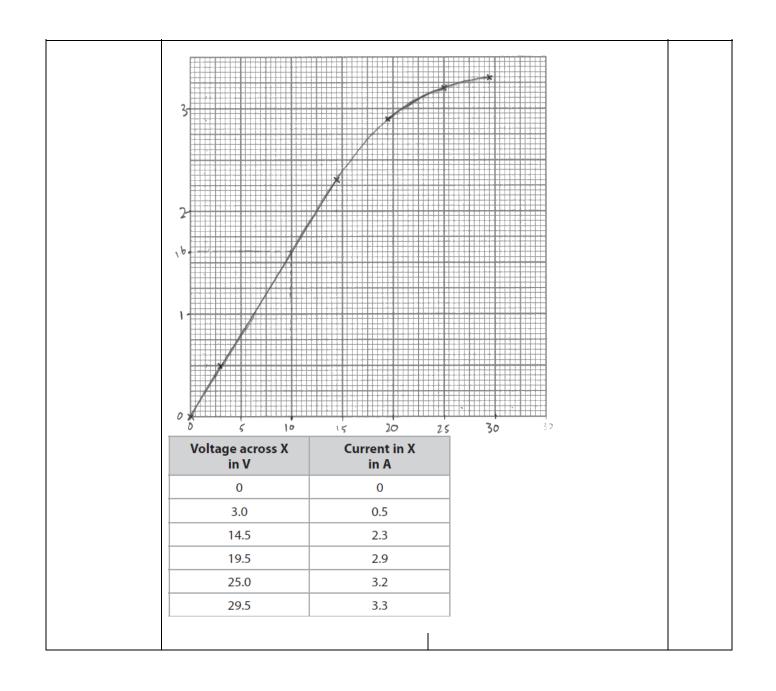
Energy Resources and Electricity Generation

Mark Scheme 2

Level	IGCSE(9-1)
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2P)
Topic	Energy resources and energy transfers
Sub-Topic	Energy resources and electricity generation
Booklet	Mark Scheme 2

Time Allowed: 52 minutes


Score: /43

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	775%	70%	60%	55%	50%	<50%

Question number			Answer	Notes	Marks	
1	(a)		A		1	
	(b)	(i)	suitable scales; 6 points plotted;; curve of best fit;	 Must use > half width and half height of grid to nearest ½ square, up to two marks available for this, 1 each error reject dot to dot allow a reasonably smooth curve, points should be 	4	
				evenly distributed about the line		

(ii)	V= I x R	in words, or accepted symbols or rearranged	1
(iii)	value of I from graph; rearranged equation/sub into equation; evaluation; unit;	allow ECF from graph answers without working can gain full marks	4
	e.g. $I = 1.6 (\pm 1/2 \text{ a small square})$ $10 = 1.6 \times R \text{ OR } R = 10/1.6$ R = 6.3 $\Omega \text{ / ohms}$	R= 6.25 allow answers which round to a number in the range 5.8 to 6.3	
(iv)	any three descriptions from: - MP1. as V increases I increases (at first);	allow as I increases V increases	3
	MP2. constant gradient/constant R (at first);	graph line linear (at first)	
	MP3. I is proportional to V;		
	MP4. gradient changes at high voltage/eq;	nonlinear above ~ 15 V graph is less steep at high voltage	
	MP5. ΔI smaller (than previously) for V > 15V;	R increases for V > 15V (to $\sim 8\Omega$)	
		ignore slows down positive correlation	

(v)	any two conclusions from: - MP1. resistance is constant at first;	allow V and I are proportional at first, it obeys Ohms law at first	2
	MP2. resistance is not constant / resistance increases as V (or I) increases;	non-ohmic /does not obey Ohms law / V and I are not proportional	
	MP3. because X gets hot(ter);	increasing temperature	
	MP4. X is a filament lamp;		
		total marks = 15	

Question number	Answer	Notes	Marks
2 (a)	any 3 of: MP1. idea of {rubbing / tearing} of {materials / surfaces}; MP2. idea of movement / transfer of electrons; MP3. electrons have negative charge; MP4. (object becomes) negatively charged by gaining electrons OR positively charged by losing electrons; MP5. need for insulating material(s);	movement of positive {charge / electrons} can only score MP1 and MP5 ignore 'friction'	3
(b)	 any 2 of: MP1. idea of opposite charges OR positive and negative charges; MP2. idea of attraction; MP3. idea of an (attractive) force larger than the weight of the loose end of tape; 	reject if mentions positive electrons ignore 'different' condone 'unlike'	2

Question number	Answer	Notes	Marks
3 (a)	C (kinetic energy to electrical energy)		1
(b) (i)		No mark for stating the formula, since E = I x V x t is given on page 2	3
	Conversion to seconds; Substitution into correctly rearranged equatio Calculation; e.g. (time =) 60 (s) 39 000 000 (490 x 60)	60 seen in working	
	1300 (V)	1330, 1327, 1326.5 (V) Correct answer without working scores full marks Allow 1.3 kV for THREE marks Allow Power of Ten error, for a maximum of TWO marks e.g. 1.326 x10 ⁻³ , 1.33, 130	
(ii)	Any four of MP1 (High voltage leads to) low current;		4
	MP2 mention of a relevant equation e.g. $P=IV$, $P=I^2R$;	,	
	MP3 Less energy is lost (from the wires);	Allow less heat loss	
	MP4 More efficient;	Ignore cost argument	
	MP5 can use thinner wires;	Allow: Can transmit the energy further	

(c) (i)	Current that changes direction (continuously);	Allow switches from	2
		+ve to -ve	
	100 times per second;	Allow 50 times/cycles	
		per second. Allow time period e.g.	
		0.01 s, 0.02 s, 1/50s	
(ii)	Transformers change the voltage / current;	Allow step-up, step-	2
		down	
	Transformers use alternating current / a.c.;	Allow reverse	
	Transformers ass arternating sarroint, aren,	argument	

Total for question 6 = 12 marks

Question number	Answer	Notes	Marks
4 (a (i)	idea that Energy source which cannot be replaced;	allow:	1
		 ignore: can' be recycled can't be stored unqualifie 'finite/limited/will run out' not sustainable can be used up 	
(ii)	Any from for 1 mark; Coal Oil or named fuel Gas	allow: crude oil fossil (fuel(s)) petrol diesel gasoline kerosene paraffin methane butane propane ignore: burning	1

	Question		Answer	Notes	Marks
4	(b)	(i)	AT WIND FARM: any one from		3
			Step-up transformer used at the wind farm;	allow: description of a transformer	
			 volt ge increased (for transmission); 		
			DURING TRANSMISSION: any one from	Allow small voltage loss in transmission	
			transmitted at (high voltage and) low current;		
			 no/little energy is wasted during transmission; 		
			AT CITY END: any one from		
			 Step down transformer at 'other end'/OWTTE; 		
			 voltage reduced to 230V/for safety/for homes; 		

Question number	Answer	Notes	Marks
4 (b) (ii)	Answer to a maximum of SIX marks to include: up to 4 ideas from advantages and up to 4 ideas from disadvantages Annotate with ticks /underlining advantages 1. Renewable energy resource; 2. No /little carbon emission or air pollution OR will not add to global warming OR little pollution; 3. Source of energy is free OR low running costs; 4. Brings employment/construction to some remote areas OR good for the local economy; 5. Lots of energy available OR abundant source OR wind farm can generate large amounts of electricity; 6. wind turbines can be more efficient than conventional power stations; disadvantages 1. Unsightly/ugly OR can damage views/ blight landscapes / local people may find them an intrusion; 2. Can be noisy/ causes noise pollution; 3. Only work when the wind blows/ above certain wind speed OR no constant output of electricity OR not reliable; 4. Each generator can only generate a small amount of electricity OR many are needed to supply the amount of electricity required for a city; 5. Costly to construct /maintain; 6. can only be placed in certain areas OR require large areas;	If a single word list, penalise by ONE mark accept suitable/sensible alternatives ignore: • environmentally friendly • cheaper than fossil fuels • kills birds /harming animals • unqualified 'expensive' /'high costs' • safer • carbon-neutral • unqualified 'more efficient'/ 'high efficiency'	11
	1	Total	TT