Density and Pressure Mark Scheme 1

Level	IGCSE
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1P)
Topic	Solids, Liquids and Gases
Sub-Topic	Density and Pressure
Booklet	Mark Scheme 1

Time Allowed:	$\mathbf{7 0}$ minutes
Score:	$/ 58$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	$' 75 \%$	70%	60%	55%	50%	$<50 \%$

Question number	Answer	Notes	Marks
1 (a)	Substitution into given equation; Rearrangement; Calculation; $\begin{aligned} & \text { e.g. } 101 \times 1700=p_{2} \times 12 \\ & \mathrm{p}_{2}=101 \times 1700 \div 12 \\ & =14000(\mathrm{kPa}) \end{aligned}$	NB Equation is given on page 2 of QP Substitution and rearrangement in either order Accept working in Pa or kPa , litres and/or m^{3}. POT error =-1 mark $14300 \text { (kPa) }$ 14 MPa correct answer without working scores 3 marks	3
(b) (i)	In words or $\mathrm{p}=\mathrm{h} \times \rho \times \mathrm{g}$;	Frg Accept "acceleration due to gravity" Reject "gravity" For h Accept depth or height For p accept pressure or pressure difference or as Δp	1
(ii)	Substitution; Calculation; $\begin{aligned} & \text { e.g. } p=11 \times 1028 \times 10 \\ & =110(\mathrm{kPa}) \end{aligned}$	Allow $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ 113 (kPa) 113080 Pa Allow 111 kPa or 110818 Pa (from $\left.\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	2
(iii)	Answer to (b)(ii) + 101 (kPa);	```Allow 210 (kPa) 211 214 Reject answer if new PoT error```	1

Question number	Answer	Notes	Marks
(c)	EITHER		2
	MP1 pressure decreases (with		
	MP2 pV is constant (for fixed mass of gas)/ $p_{1} \times V_{1}=p_{2} \times V_{2}$;	v is inversely proportional to p	
	OR		
	MP3 Sea may be warmer near the surface;		
	MP4 (causing the pressure inside the bubble to increase)which causes the volume to increase	MP4 is DOP on MP3	

Total 9 marks

Question number	Answer	Notes	Marks
2 (a)	minimum of three straight arrows for different particles (with different lengths); arrows in different directions;	judge by eye arrows need not be attached to particles but it should be clear which particle they refer to	2
(b)	any three from: MP1. particles collide/impact/eq; MP2. with sides/walls of container; MP3. idea that force is produced; MP4. idea of pressure as force on an area;	allow hit for collide allow particle changes momentum $p=F / A$	3
(c) (d)	idea that pressure increases/eq;		1
			3
	Statement	Tick ()	
	the gas particles get bigger		
	the mass of gas particles stays the same	\checkmark	
	the gas particles move faster	\checkmark	
	the average distance between gas particles increases	\checkmark	
	the temperature of the gas decreases		
	one mark for each correct;;; if 4 ticks then max mark is 2 if 5 ticks then zero marks		
		total marks $=9$	

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
4 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
94; \\
any two sensible suggestions: e.g. \\
- to make results (more) reliable; \\
- to produce an average reading; \\
- to identify anomalous results; \\
- because there may have been a temperature change; \\
- because there may have been friction in the syringe;
\end{tabular} \& ignore references to keeping it a fair test \& \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
any sensible suggestion: \\
e.g. \\
- reduced scale gives fuller use of the grid; \\
- because the lowest value of p or V is \(50 / \mathrm{eq}\); \\
- because p or V cannot be zero; \\
idea of straight line having an even distribution of points about the line; \\
all points seem to be on the curve; \\
any sensible suggestion; \\
e.g. \\
- keep the temperature constant \\
- ensure no air gets into/out of the syringe/eq \\
- keep apparatus exactly the same \\
- wait for same time after adding/removing loads to take the volume reading \\
any two from: \\
MP1. increase sensitivity/resolution of instruments; \\
MP2. take reading(s) to fill in the middle of the graph/eq; \\
MP3. take reading(s) to extend the range of the graph;
\end{tabular} \& \begin{tabular}{l}
allow RA \\
ignore there are no values below 40 \\
no mark for a bald 'it's the curve' or 'it's the line' allow points are very close to the curve \\
ignore references to parallax error / accuracy allow take readings with greater precision/eq
\end{tabular} \& 1

2
2
1

2

\hline
\end{tabular}

Question number	Answer	Notes	Marks
5 (a)	(Average speed) increases;		1
(b)	Any three of the following ideas-	allow	3
	MP1. Idea of (continuous) random motion; MP2. collide /impacts / eq; MP3. With walls (of balloon); MP4. idea that force is produced (by bombarding molecules); MP5. idea as pressure as force on an area;	bombard, hit, impact upon momentum argument / N3 $p=F / A$	
(c)	Any one of the following ideas- MP1. convection (current moves hot air upwards); MP2. hot air/it is less dense;	allow RA ignore hot air rises condone lighter reject for MP2 less dense particles	1
(d) (i) (ii)	$\mathrm{D} \quad=\frac{\text { mass }}{\text { volume }} ;$ Substitution into correct equation; Rearrangement; Evaluation; $\text { e.g. } 0.95=\frac{m}{2800}$ $\begin{aligned} & \mathrm{m}=0.95 \times 2800 \\ & =2700(\mathrm{~kg}) \end{aligned}$	Accept symbols or rearrangement e.g. $\rho=m / V$ allow sub and rearrangement in either order 2660	1 3
(e) (i) (ii)	Any one of the following ideas - MP1. atmospheric density decreases as height increases; MP2. depth (from top of atmosphere) decreases; MP3. temperature of air is colder / (cold)molecules move slower; Any one of the following ideas MP1.air inside/balloon expands; MP2. (hot) air escapes (from the balloon); MP3. hot air (now) cools down / need to use burner;	Allow - number of molecules decreases (from ρ. .g.h idea) Allow idea that outside air is cooler at altitude	1

Total 11 marks

Question number	Answer	Notes	Marks
6 (a) (i)	$-273\left({ }^{\circ} \mathrm{C}\right)$		1
(ii)	any 3 of: MP1. idea of (continuous) random motion; MP2. collide/impacts/eq; MP3. with walls (of container); MP4. idea that force is produced (by bombarding molecules); MP5. idea of pressure as force on an area;	bombard, hit, impact upon allow Newton's $2^{\text {nd }}$ Law momentum argument $\mathrm{p}=\mathrm{F} / \mathrm{A}$	3
(b) (i)	pressure = density $\mathrm{x} \mathrm{g} \times$ height;	in words or accepted symbols e.g. $\mathrm{p}=\rho \mathrm{gh}$ not 'gravity' for g	1
(ii)	use of correct pressure; substitution; rearrangement; evaluation; e. $\begin{aligned} & 104-100=4 \mathrm{kPa} \\ & 4000=1000 \times 10 \times \mathrm{h} \\ & \mathrm{~h}=4000 /(1000 \times 10) \\ & 0.4(\mathrm{~m}) \end{aligned}$	sub and rearrange in either order deduct 1 mark for each of the following: - conversion error from kPa to Pa - use of wrong pressure e.g. use of 104 or 100 kPa and not changing to Pa gets 2 marks max	4

