www.igexams.com

Electromagnetic Induction
 Mark Scheme

Level	IGCSE(9-1)
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1P)
Topic	Magnetism and Electromagnetism
Sub-Topic	Electromagnetic Induction
Booklet	Mark Scheme

Time Allowed:	29 minutes
Score:	/24
Percentage:	/100

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	$' 75 \%$	70%	60%	55%	50%	$<50 \%$

www.igexams.com

Question number	Answer	Notes	Marks
1 (a)	any four from: MP1. there is a current in the rod; MP2. (therefore) magnetic field around rod; MP3. magnetic fields interact / overlap; MP4. producing a force (on the rod); MP5. catapult effect / motor effect / LH rule; MP6. rod moves to the right / towards the power supply;	allow 'AB' for rod throughout allow current in the rail ignore references to cutting field lines accept the rod moves sideways / left	4
(b)	any four from: MP1. alternating current changes direction (continuously); MP2. current in coil produces alternating magnetic field/eq; MP3. (producing) force on the coil/cone; MP4. reversing direction of current reverses direction of the force; MP5. hence coil/cone vibrates; MP6. cone vibrates air particles;	allow any marking point if clear from diagram allow changing magnetic field allow coil / cone moves in and out / backwards and forwards total marks $=8$	4

www.igexams.com

Question number	Answer	Notes	Marks
2 (a)	any two from: MP1. reverse the magnet (N into coil); MP2. reverse the connections at the ammeter; MP3. move the magnet out of coil;	ignore all references to - speed of movement - numbers of turns on the coil CARE that candidate does not conflate MP2 and 3 to negate their answer allow for MP2 invert the coil	(2)
(b) (i)	$\begin{aligned} & \mathrm{Y}=\text { magnet; } \\ & \mathrm{Z}=\text { coil (of wire); } \end{aligned}$		(2)
(ii)	(\pm)1.6 (V);		(1)
(iii)	reading of time for 1 cycle; evaluation; e.g. 0.04s 25 (Hz)	no mark for eqn as it is given time can be assumed if $\mathrm{f}=1 / 0.04$ seen allow for 1 mark $50,12.5(\mathrm{~Hz})$	(2)
(iv)	C higher higher ;		(1)
(v)	any one from stronger magnet; more turns on the coil;	ignore bigger magnet condone more coils	(1)
(c) (i)	```rearrangement of eqn; substitution; evaluation; e.g. work done (energy output) = power x time (=) 3.1 x 290 900 (W)```	Accept 899 (W)	(3)
(ii)	$\text { efficiency }=\frac{\text { useful energy output }}{\text { total energy input }}$	accept standard abbreviations rearrangements with factor of X 100	(1)
(iii)	$\begin{aligned} & \text { substitution; } \\ & \text { rearrangement of eqn; } \\ & \text { evaluation; } \\ & \text { e.g. } \\ & \text { input energy }=\frac{\text { output energy }}{\text { efficiency }} \\ & =\frac{899(\mathrm{~W})}{0.72} \\ & =1200 \quad \mathrm{~J}) \end{aligned}$	ECF from ci allow 900 for 899 1245, 1250, 1300 (J)	(3)

Total for Question 2 = 16 marks

