Radioactivity Mark Scheme 1

Level	IGCSE(9-1)
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1P)
Торіс	Radioactivity and Particles
Sub-Topic	Radioactivity
Booklet	Mark Scheme 1

69 minutes
/57
/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	775%	70%	60%	55%	50%	<50%

(Question number	Answer	Notes	Marks
1	(a) (i)	number of protons = 1; number of neutrons = 2;		2
	(ii)	any three of the following comparisons : MP1. beta particle is negatively charged <u>and</u> alpha is positively charged:	ignore descriptions of applications of types of radiation	3
		 MP2. beta particle has lower/less mass ORA; MP3. beta particle has 1 charge but alpha has 2 charges; MP4. beta particle is an electron but alpha is 2p + 2n /eq; MP5. beta is less ionising; MP6. beta has higher speed; MP7. beta particles have larger range; 	allow 'beta is lighter' ORA	
		MP8. beta has higher penetrating ability;	allow beta can pass through paper but alpha will be stopped	
	(111)	 any sensible suggestion; e.g. alpha is 4 nucleons, tritium has (only) 3 / eq tritium has only 1p, 2p are in alpha tritium has not got enough mass / mass number too low tritium has not got enough nucleons tritium has not got enough p / atomic number too low tritium has not got enough p + n 	ignore tritium is too small	1

(b)	 any two from: MP1. energy explanation; e.g. beta particles have given up all their KE on impact MP2. absorption explanation; e.g. beta particles have hit (and been absorbed by) phosphor MP3. penetration explanation; e.g. beta cannot penetrate (thick) glass / tube MP4. range explanation; e.g. signs are further away than the range of beta 	 ignore: beta particles have low ionisation /OWTTE no gas can escape 	2

C	Questi numb	on er	Answer	Notes	Marks
1	(c)	(i)	time taken; and either of	allow how long it takes reject 'half the time'	2
			 for (radio)activity to halve; for half of (radioactive) nuclei / atoms / isotope to decay; 	allow count rate for activity reject: • particles • molecules • substance • 'break down' • 'reactivity' • a nucleus / an atom • halve in mass • to completely/fully decay	
		(ii)	working seen/appropriate line(s) on graph seen; 13.5 years;	tolerance \pm 0.5 years	2

(d)	MP1. correct judgment re claim;		2
	MP2. (because) EITHER correct statement re time (at which the activity is 400);	allow range of 21-22 years	
	OR		
	activity (at 20 years);	allow range of 410 to 440	
	e.g. the manufacturer is correct because the time would be 21.5 years (to reach an activity of 400)		
	OR		
	the manufacturer is correct because the activity is 420 (counts per minute) (at 20 years)		
		total marks = 14	

Question number	Answer	Notes	Marks
2 (a)	A - fission		1
(b)	A - absorbing some of the neutrons		1

Total 2 marks

Question Answer		Notes	Marks
3 (a) (i)	A – electromagnetic waves		1
(ii)	time;	accept how long it takes do not accept 'half of the time'	2
	for amount of (radioactive) isotope to halve;	accept for 'amount' (number of un-decayed) nuclei / atoms / molecules / (un-decayed) mass of	
	OR	isotope	
	for (radio)activity to halve;		
(b)	Any two of -	specific concepts and terminology are needed if the source is external max mark is ONE allow	2
	MP1. (α or β) would have insufficient range ;	ORA penetration	
	MP2. (α or β) would be absorbed by patient/air;	ORA stopped by skin / bone	
	MP3. (α or β) are more ionising (than gamma rays);	Allow (α or β) would be (more) likely to cause cancer/ damages cells (than gamma rays), ORA	

(c) (i)	Any two of -	specific concepts and	2
		terminology are needed	
		do not credit repeat of	
		stem	
		Reject for 1 mark.	
		(it/nucleus) breaks down	
	MP1. Idea that activity is due to	allow	
	nucleus decaying;	 nucleus is unstable 	
		 nucleus emits gamma 	
		 nucleus changes into 	
		new isotope	
	MP2. (after some time) fewer	fewer atoms of the same	
	radioactive nuclei /atoms	isotope left	
	left;		
	MP3. Number (of nuclei)	decay rate decreases	
	decaying per second		
	decreases;		

(ii)	one halving calculated; Idea of four half-lives / halvings; Evaluation; e. (420/2=) 210 for 1 mark	 4 repeated halving seen fraction remaining is 1/16 of activity Allow 	3
	24 ÷ 6 = 4 (half-lives) 26 MBq (26.25)	 four divisions by 2 seen for 2nd mark remaining fraction = 1/16 = 0.0625 Correct answer without working scores full marks 	

Total 10 marks

Question number	Answer		Notes	Marks	
4 (a) (i)					2
	safety precaution	needed	not needed		
	not touch the source with bare hands	(√)			
	use tongs	\checkmark			
	wear gloves		(√)		
	wear goggles		\checkmark		
	students sit at least two metres away	\checkmark			
	wear a lead apron		\checkmark		
	store source in a lead box	\checkmark		Ignero incorrect ticls is	
	3 ticks correct in first colu	umn;		first column (award 1 mark as long as the three	
	2 ticks correct in second c	olumn;		correct boxes are ticked)	

(b) (i)	(because distance is a) controlled variable;	allow idea of fair test/affecting results ignore comments relating to accuracy, reliability	1
(ii)	MP1. idea of background radiation; MP2. any ONE sensible source; e.g. cosmic rays rocks/Earth/buildings some foodstuffs (coffee) radon	allow 'sources of radiation all around us' allow nuclear weapons testing/disasters	2

(iii)	MP1. lead;		3
	MP2. idea of best absorber giving lowest count rate;	dependent on MP1	
	MP3. for Ba-133/can't evaluate using Sr-90 data;	dependent on MP1	
(iv)	any 3 of:	no mark for 'I agree with this conclusion /OWTTE'	3
	MP1. stone absorbs better than {plastic / wood / paper} for Sr-90/beta;	allow stone best absorber for Sr-90	
	MP2. stone worst absorber for Ba-133/gamma;		
	MP3. use of data to justify MP1 or MP2;	e.g. the count rate for plastic is about half that of stone for Ba-133	
	MP4. may not be worse absorber than paper as paper much thinner/not tested for Ba-133;		

(v)	MP1. beta;	allow 'beta and gamma'	3
	MP2. it's not alpha <i>because</i> {alpha would not reach the detector at this distance/ alpha would not go through paper};	allow 'it goes through paper'	
	MP3. it's not gamma <i>because</i> gamma is not stopped by metals ;	allow 'it doesn't go through metals'	
		MP2 and MP3 dependent on MP1	
(vi)	reading would be too high/eq;		1
(vii)	idea that count rate needs to be constant during the investigation/ORA;	allow either idea that would not need to replace the source often/ORA; or idea that shorter half- life has higher activity and therefore is more hazardous;	1

Total 16 marks

Question number	Answer	Notes	Marks
5 a	(Atoms / nuclei with the) same number of protons; Different numbers of neutrons;	 ALLOW relevant correct alternatives e.g. atomic number, proton number nucleon number, atomic mass ignore comments about electrons 	1 1
bi	Electron;	ignore comments about properties of electrons e.g. speed ALLOW • e ⁻ or e ⁺ • positron	1
ii	any suitable detector e.g. Geiger(-Muller) tube/detector/counter; photographic film; zinc sulfide; gold leaf electroscope;	ALLOW phonetic/incorrect spelling 	1
111	beta penetrates paper; beta absorbed/stopped by lead +/or aluminium ;	 IGNORE all details of experimental setup beta goes through aluminium/eq DO NOT ALLOW bounced back for absorbed contradictions in answers e.g. re aluminium 	1 1

MP1. line goes through 0,1400 and (first half-life	ALLOW for MP2	1
MP2. line goes through/second half-life plotted at	second half-life e.g. 800400	1
MP3. a correctly curved line between 15 and 30 hours AND the line extends beyond 35 hours;	IGNOREa <i>slight</i> upcurve at 35 to 40 hoursBar charts	1
<figure></figure>	 Bar charts Since this is a sketch then allow tolerance of +/- 1 square on the points 	

Question number	Answer	Notes	Marks
d i	 any FOUR from: MP1. there is a known proportion / composition / activity when rocks formed; MP2. measure/determine the proportion of uranium or the activity now; 	allow as a numerical example ignore work out the proportion when rocks were formed ALLOW Bq for activity radioactivity for activity amount for proportion IGNORE measure half-life of uranium they know its activity	1 1 1
	 MP3. compare activity now to original activity/eq; MP4. (hence) determine the time / number of half-lives elapsed; MP5. (hence) calculate age from reference to half-life; 	ALLOW colloquial expressions such as 'see how long it took to decay this much'	

ii	MP1. idea that it/half-life is too short OR idea that decay occurs too quickly/rapidly;	comparative of some sort needed for MP1 allow not enough time	1
	 PLUS MP2. (hence) U / isotope would (all) have decayed (long ago) OR U activity would be too small (to distinguish from background / to measure); 	care that you do not award both alternatives for MP2 IGNORE granite decays it decays	1

(Total for Question 5 = 15 marks)