www.igexams.com

Motion in the Universe Mark Scheme 1

Level	IGCSE(9-1)
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1P)
Topic	Astrophysics
Sub-Topic	Motion in the Universe
Booklet	Mark Scheme 1

Time Allowed:	47 minutes
Score:	$/ 39$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	$' 75 \%$	70%	60%	55%	50%	$<50 \%$

www.igexams.com

www.igexams.com

(vi)	Any one of - Energy argument - transfer of GPE to KE (ORA); Force argument, e.g. pulled by the Sun's gravitational force;	Ignore - unqualified `pulled by gravity' - gravitation from other bodies	1
(b)	Substitution into given formula; Conversion from days to hours; Calculation; e.g. $v=2 \times \pi \times 150000000 \div(365 x$ 24) $=110000(\mathrm{~km} / \text { hour })$	24 seen 107 589/108 000 (km/hour) Allow due π (ONLY) a number that rounds to 110000 $2582130=2($ no 24 hr) $43036=2$ (used 60 instead of 24)	3

Total 10 marks

www.igexams.com

Question number	Answer	Notes	Marks
2 (a)	any suitable from: e.g. - asteroid; - meteor(ite); - (artificial) satellite; - a moon; - comet; - named planet; - dwarf planet e.g. Pluto; - neutron star; - white dwarf; any two suitable from: - (the) Universe; - galaxy; - solar system; - star / Sun; - named planet (1); - named planet (2); galaxy;	accept appropriate correct answers planets: - Mercury - Venus - Mars 'Sun and star' is 1 mark only planets should be gas giants: - Jupiter - Saturn - Uranus - Neptune	4
(b) (i) (ii) (iii) (iv)	gravitational force / gravitational pull / (force of) gravity; B; single straight arrow directed towards the Sun; B;	judge by eye total marks $=8$	1 1 1 1

www.igexams.com

Question number	Answer	Notes	Marks
3 (a)	B galaxy - solar system - Sun planet		1
(b) (i) (ii)	MP1. Idea that (orbit) shapes both (approximately) circular; MP2. Idea that both planets orbit the same star /Sun; MP3. similar plane of orbit; MP4. Same direction of orbit; different orbital radii ;	accept elliptical, oval, eccentricity Allow "Sun is at centre of orbit" Allow - Earth (orbit) radius < Mars orbit radius - different time period - correct reference to speed of orbit - different circumference reject incorrect comparisons	2 1
(c)	Substitution into correct equation; Evaluation; Answer to two significant figures; $\begin{array}{ll} \text { e.g. v }=\frac{2 \times \pi \times 23500}{1.26} & (1 \text { mark }) \\ =117000 & (2 \text { marks }) \\ =120000(\mathrm{~km} / \mathrm{day}) & (3 \mathrm{marks}) \end{array}$	$2 \pi r / T$ ONLY NO mark for equation as it is given on page 2 Bald correct answer to 3 or more s.f. scores 2 marks, e.g. 117186	3
(d)	MP1. Idea that the orbital radii of the two Moons are different; MP2. Idea that orbit radius of Enceladus is larger;	Ignore references to gravity ORA NB MP1 will be subsumed within MP2 response e.g orbit radius of Enceladus is ten times as big (ORA) gets both marks Allow response in terms of orbit / orbit diameter / orbit circumference	2

www.igexams.com

Question number	Answer	Notes	Marks
4 (a)	Venus;		1
(b)	because it has the largest mass;	ignore references to diameter/size	1
(c) (i)	$\begin{gathered} \text { density } \\ =\underline{\text { volume }} \end{gathered}$	in words or accepted symbols e.g. $\rho=\mathrm{m} / \mathrm{V}$ condone D for density	1
(ii)	changing diameter to radius; substitution; evaluation; e.g. $\begin{aligned} & \rho=\left[4 / 3 \times \frac{100 \times 10^{24}}{\left.3.14 \times 25000^{3}\right]}\right. \\ & 1.5 \times 10^{12}\left(\mathrm{~kg} / \mathrm{km}^{3}\right) \end{aligned}$	if diameter used instead of radius (gives 1.9×10^{11}) max 2 -1 for POT error allow answers rounding down to $1.5 \times 10^{12}\left(\mathrm{~kg} / \mathrm{km}^{3}\right)$	3
(d)	change of time into seconds (seen anywhere); use of orbital radius as $150 \times 10^{6} \mathrm{~km}$; evaluation; e.g. $\begin{aligned} & v=\frac{2 \times 3.14 \times\left(150 \times 10^{6}\right)}{365 \times 24 \times 60 \times 60} \\ & 29.9(\mathrm{~km} / \mathrm{s}) \end{aligned}$	no mark for eqn as this is given allow 30 (km/s)	3
(e)	an evaluation to include 3 of: MP1. identifying period as time of orbit; MP2. correct detail of why statement is right/wrong; MP3. correct use of data comparing 2 planets; MP4. period depends on distance from the Sun;	can refer to either mass or diameter of planet for 'size' must name planets must name planets	3

