Light and Sound

Question paper 4

Level	IGCSE(9-1)
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2P)
Topic	Waves
Sub-Topic	Light and Sound
Booklet	Question paper 4

Time Allowed:	90 minutes
Score:	$/ 75$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	775%	70%	60%	55%	50%	$<50 \%$

www.igexams.com

Question number	Answer	Notes	Marks
1 (a)	MP1. pitch is frequency; MP2. any one of: - whether sound/note sounds high or low; - high sound has high frequency ORA;	allow 'it' for pitch ignore references to amplitude, wavelength allow vibrates more often / with shorter time period 'high pitch has high frequency' ORA gains 2 marks	2
(b) (i) (ii)	ruler / measuring tape; oscilloscope / mobile phone app / data logger / (guitar) tuner; dependent - frequency / pitch; independent - length (of pipe);	ignore microphone frequency meter frequency gauge frequency counter	2

www.igexams.com

(c)	any three of: MP1. repeat AND average the readings; MP2. (measure a) larger range of values; MP3. (measure some) intermediate values; MP4. improved precision of a named variable / instrument; MP5. control a named variable (e.g. temperature); MP6. plot a graph of frequency and length; MP7. deal with anomalies;	accept 'measure more values' for 1 mark if NEITHER MP2 nor MP3 awarded e.g. 'use a cm ruler', 'measure frequency in mHz ' etc. ignore references to accuracy allow 'blow with controlled apparatus' allow 'plot a graph of the results' allow 'identify anomalies'	3

Total 9 marks
www.igexams.com

Question number	Answer	Notes	Marks
2 a (i)	$\begin{aligned} & 0.28 \\ & 0.37 \end{aligned}$	(both for 1 mark)	1
(ii)	suitable scales; axes labelled; plotting of second and fifth points ; ; line of best fit;	Must use > half width and half height of grid no units on axis labels ignore orientation of graph to nearest $1 / 2$ square, up to two marks available for this line - allow ecf from candidate's third and fourth points	Max 5
	line of best fit;		
	0.70	$\sin i$ $\sin r$ 0.00 0.00 0.26 0.17	
		0.26 0.17	
	1	0.42 $\mathbf{0 . 2 8}$ 0.57	
	at 010	0.57 $\mathbf{0 . 3 7}$	
	(aso	0.71 0.47	
		If incorrect graph plotted (io against ro) the only scales and line mark can be awarded (NB in this case can only get first MP in (a)(iii))	
(iii)	Attempt at gradient of line, seen on graph or in working; Value in range 1.48 to $1.54 ;$	e.g. triangle or equivalent drawn on graph, rise/run bald correct answer is 1 mark only	2

www.igexams.com

| b | Any two of -
 MP1. Idea that value relates to all the data
 collected;
 MP2. Idea that method allows for anomalies;
 MP3. Idea that effects of uncertainty/error can
 be reduced or accounted for;Method checks reliability, anomalies can be
 seen
 graph is an averaging technique
 Ignore comments about accuracy | 2 |
| :---: | :--- | :--- | :---: |

(Total for Question 2 = 10 marks)
www.igexams.com

Question number	Answer	Accept	Reject	Marks
3 (a)	Refraction into glass towards the normal ($r>0$); Angle of incidence and angle of refraction both labelled correctly at the same surface; Refraction at the lower surface into air away from the normal; Emergent ray parallel to incident ray after correct refraction (by eye);	Accept dotted lines Ignore any reflections Ignore a second incorrectly labelled pair		

Question number	Answer		Accept	Reject	Marks	
3 (b) (i)	One mark for either sin i or sin r correct;		$\begin{aligned} & \sin i=0.866 ; \\ & \sin i=0.8660 ; \\ & \sin r=0.559 ; \\ & \sin r=0.5592 ; \end{aligned}$ Ignore degree sign Ignore any other values		1	
	i	60°				
	r	34°				
	$\sin \mathrm{i}$	0.87				
	$\sin r$	0.56				
(ii)	$n=\sin i \div \sin r$			Accept refractive index $=\sin \mathrm{i}$ $\div \sin r$		1
(iii)	Two marks for correct answer Refractive index = 1.55; ; Or Refractive index = 1.6; ; Or Refractive index = 1.5; ;		Accept for one mark only any other value in the range $1.5<n<1.6$ Any power of 10 error, e.g. 155.3		2	

www.igexams.com

Question number	Answer	Accept	Reject	Marks
3 (c)	Any three of: MP1 any mention of repetition / take an average of readings; MP2 vary i to obtain more values ; MP3 plot a graph of sin i against sin r ; OR Calculate/work out/ find n; MP4 find gradient of graph; OR Calculate average of n; MP5 sensible experimental precaution / improvement to method (e.g. mark lines on paper, Ignore second glass block Ignore different colours thinner beam, fix block firmly in position, remove anomalies, sharper pencil, use a more precise protractor e.g. $1 / 20$);			

www.igexams.com

Question number		Answer	Notes	Marks
4 (a)	(i)	set-up showing any two fromclear indication of equipment needed; correct refraction at one surface of glass block shown; protractor shown in use;	ray-box or pins Allow ruler for apparent depth method	2
	(ii)	angle of incidence; angle of refraction;	Allow apparent depth method, i.e. real depth; apparent depth;	2
		OR critical angle; idea of grazing emergence;		
	(iii)	find $\sin i$ and $\sin r$; refractive index is the ratio of sines;	Accept for two marks - $(n=) \sin i / \sin r$ - $(n=) 1 / \sin c$ - graph of $\sin i$ vs $\sin r$	2
		OR find sin c; refractive index is $1 / \sin c$;	```Allow refractive index = real depth }\div\mathrm{ apparent depth for two marks```	
(b)	(i)	Diagram reflection at first back surface; reflection at second back surface;	judge by eye - straightness of ray and correctness of angle - emergent ray parallel to incident ray	2
	(ii)	Refracted / slows down / wavelength decreases	Ignore: direction change ideas it does nothing / nothing happens	1

www.igexams.com

Question number	Answer	Notes	Marks
5 (a)	cooking - micro(waves) OR infrared (waves); treating cancer - ultraviolet OR x-rays OR gamma (rays); identifying broken bones - x-rays;	if more than one example given for each use then reject mark if any incorrect	3
(b)	C-the same speed;	(i)	drawn ray shows refraction in the correct direction (downwards) at both surfaces; drawn ray is above yellow ray and diverges from it (if ray had entered at the original point);
(c) ignore arrows and labels dependent on previous	(ii) A- black; allow if ray drawn enters parallel to original ray	1	

www.igexams.com

Question number	Answer	Notes	Marks
5 (a)	cooking - micro(waves) OR infrared (waves); treating cancer - ultraviolet OR x-rays OR gamma (rays); identifying broken bones - x-rays;	if more than one example given for each use then reject mark if any incorrect	3
(b)	C-the same speed;	(c)	drawn ray shows refraction in the correct direction (downwards) at both surfaces; drawn ray is above yellow ray and diverges from it (if ray had entered at the original point);
judge by eye ignore arrows and labels dependent on previous	2		
(ii)	A- black;	allow if ray drawn enters parallel to original ray	1

Total 7 marks

(ii)

```
Attempt to find slope or gradient of line ;
AND
evaluation of value;
matching unit;
    e.g.
    = 0.6/0.0018
    = 333
    m/s
```

(iii) Any one specific variable from the experiment; e.g.
hitting the block in the same place
Use the same microphone/timer/wires
Ensure there is no 'hammer bounce'
(iv)

Any 2 suggestions from
MP1. repeat the time readings (for each distance); MP2. measure the distance to the sensor of the microphone;
MP3. use wider range of distance readings (<0.62 or >1.38);
MP4. use intermediate distances (between points);
Δ seen
or two lines from same axis
seen
or rise/run seen
value in range of 310-350
allow
$0.333 \mathrm{~km} / \mathrm{s}$
$0.333 \mathrm{~m} / \mathrm{ms}$
These must be specific to
the experiment
Accept same

- temperature
- humidity
- density
- draughts
- force
- block
ignore
- 'keep everything the same'
- use control variables
- repeat experiment
ignore imprecise
suggestions e.g.
- 'be careful with timer'
- 'change the distance'

www.igexams.com

Question number	Answer	Notes	Marks
$7(\mathrm{a})$	standard definition of wavelength; e. • distance between two points on a wave/ two peaks/ two troughs distance between each wavefront distance travelled by wave in one time period	allow: from clear diagram crest for peak	1

www.igexams.com

Question number	Answer	Notes	Marks
7 (ci) $7 \quad \text { (cii) }$	Diffraction; And one of - The incoming wave spreads out at the gap; - The energy carried by the wave spreads out ; idea that (diffraction only apparent when) λ and size of gap comparable/RA; wavelength of light is very small / smaller than water waves /smaller than the gap;	allow: - diffraction seen in (cii) - recognisable spelling for 'diffraction' ignore: - the wave gets bigger - wave is bent - (wavefront is) curved Allow RA	2
		Total	9

www.igexams.com

Question number	Answer	Notes	Marks
8 (a)	idea that higher frequency gives higher pitch;	allow reverse argument condone idea of proportionality / linearity	1
(b) (i)	(wave) speed = frequency \times wavelength	allow abbreviation, e. v $=\mathrm{f} \times \lambda$ or rearrangements	1
(ii)	substitution into correctly rearranged equation; evaluation; e. (v=) $340 / 160$ $(v=) 2.1(m)$	allow 2.125, 2.12, 2.13 or 2 (if supported)	

www.igexams.com

(c) (i) (ii)	straight line of best fit drawn within indicated area; speed of sound in m / s line of best fit extended to $20^{\circ} \mathrm{C}$; student's own value from graph \pm half a square;	line does not need to be extended beyond data range for this mark	1

\(\left.$$
\begin{array}{|c|l|l|c|}\hline \text { (d) } & \begin{array}{l}\text { any 2 from: } \\
\text { MP1.speed (of sound) decreases (with } \\
\text { temperature); } \\
\text { MP2. frequency is constant; } \\
\begin{array}{l}\text { MP3. so wavelength decreases (with } \\
\text { temperature); }\end{array}\end{array}
$$ \begin{array}{l}allow 'sound slows

down'

ignore references to

particle speed\end{array} \& allow \lambda is smaller\end{array}\right]\)| Total 9 marks |
| :---: |

