Properties of waves

Mark Scheme 2

Level	IGCSE(9-1)
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Single Award (Paper 2P)
Topic	Waves
Sub-Topic	Properties of waves
Booklet	Mark Scheme 2

Time Allowed: 86 minutes

Score: /71

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	775%	70%	60%	55%	50%	<50%

	Questi numb		Answer	Notes	Marks
1	(a)		B - light;		1
	(b)	(i)	(signal has) two values;	accept • on or off • 0 and 9 • 0 and 1 • 1 and 9 • two signal strengths/states • binary • it is a square wave(form)	1
				ignoreall at 9up and downtrue and false	

(ii)	any two of:	ignore references to analogue signals	2
	MP1. (idea of) increasing the bit rate / sending more bits in the same time;	allow more bits / pulses per second	
		condone increase frequency	
	MP2. (idea of) an additional level / strength;	allow a named extra level e.g. 'use 4.5 as well'	
	MP3. (idea of) increased bandwidth / range of transmission frequencies;	allow wider bandwidth ignore 'broadband'	
	MP4. (idea of) multiplexing;	allow use more than one channel	
		condone add extra signals	
	MP5. (idea of) quantisation (algorithm);	allow compression of data	

Total 4 marks

Question number	Answer	Notes	Marks
2 (a)	2 value line with top line & lower line at constant heights; straight up/down lines;	ignore spacing of pulses judge by eye	2
	e.g. typical 'top hat' waveform Digital	allow waveform with 3 distinct values at +X, zero and - X	
(b)	any two described <u>advantages</u> from:-	accept	2
	MP1. information density e.g. digital carry more information (per second);		
	MP2. quality e.g. maintain quality over longer distances;	clearer	
	MP3. easier to reduce noise/less affected by noise;		
	MP4. regeneration e.g. able to boost signal to original strength;	easier to process	
		total marks = 4	

	uest		Ans	wer	Notes	Marks
3	а	i	number of waves/cy	rcles = 3.5;	3.5 seen or implied	2
			$\frac{0.60}{3.5}$ = 0.17 (m);		0.1714 (m) 17 cm 17.14 cm	
					For 1 mark only 17 (m), 17.14(m), 0.2 (m), 0.15 (m), 0.085 (m)	
		ii	wave speed = frequ	uency x wavelength	allow words or accepted symbols and rearrangements	1
		iii	substitution; rearrangement; evaluation; eg. $3.0 \times 10^8 = 0.17 \times f$ $3.0 \times 10^8 / 0.17$		allow ecf from ai	3
			1.8 x 10 ⁹ (Hz)		1.76 x 10 ⁹ (Hz) 1.75 x 10 ⁹ (Hz) POT = -1	

b	i	diffraction;		1
	ii	any two from:		2
		MP1. microwaves not diffracted as much;	must have quantifier-e.g 'little' ignore 'microwaves not diffracted'	
		MP2. diffraction (only seen) when size of barrier/gap comparable to wavelength;		
		MP3. radio-waves have (much) longer wavelength than microwaves/RA;	wavelength of microwaves (much) smaller than size of barrier allow an implied comparison	
			total =9 marks	

Question	0	N - 1	Mandaa
number	Answer	Notes	Marks
	A - amplitude;		1
(ii) E	B - frequency;		1
E L	Any of - e.g. Light, (any named) electromagnetic wave, water waves, S(econdary) seismic waves;	Allow • slinky if described correctly • wave on a string Ignore 'heat waves'	1

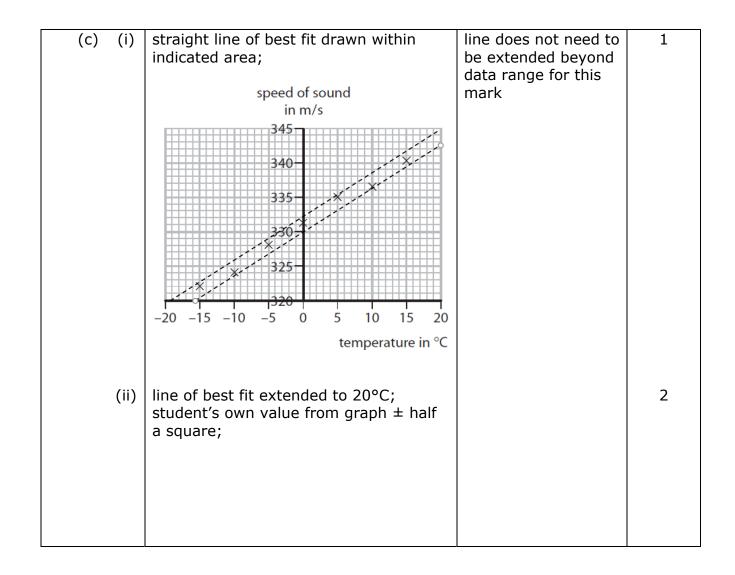
Longitudinal -Ignore left to right, up and down, to and fro, 2 Idea that vibration is parallel to energy transfer; side to side e.g. Accept vibration is in the same direction that the wave • oscillation for vibration • information transfer for energy transfer travels they (vibrations) are in the same direction that the • clear labelled diagrams, e.g. wave moves vibration longitudinal Condone for longitudinal 'particles oscillate in the same direction that the wave goes' Transverse -Idea that vibration is perpendicular to energy transfer; e.g. vibration is at 90° to the direction that the wave they (vibration) are at right angles to the direction the wave moves

(Total for Question 4 = 5 marks)

Question number	Answer	Notes	Marks
5 (a)	В;	voltage	1
(b) (i)	MP1. Axes labelled with units; MP2. Correct scales (to occupy at least 1/4 of the area of the graph and in sensible intervals); MP3. Plotting; MP4. Plotting; MP5. straight line of best fit which extends beyond given data points;	 ignore orientation of graph scale intervals on axes should be 2 or 5 or 10 points should be less than 0.5 sq in diameter -1 each incorrect plot to max of -2 tolerance = +/- ½ square if zero is not included, then line should go through all points except 3rd or 4th if zero included, look for balance of points 	5

(ii)	Attempt to find slope or gradient of line; AND evaluation of value; matching unit; e.g. = 0.6/0.0018 = 333 m/s	Δ seen or two lines from same axis seen or rise/run seen value in range of 310-350 allow 0.333 km/s 0.333 m/ms	3
(iii)	Any one specific variable from the experiment; e.g. hitting the block in the same place Use the same microphone/timer/wires Ensure there is no 'hammer bounce'	These must be specific to the experiment Accept same • temperature • humidity • density • draughts • force • block	1
(iv)	Any 2 suggestions from MP1. repeat the time readings (for each distance); MP2. measure the distance to the sensor of the microphone;	 ignore 'keep everything the same' use control variables repeat experiment ignore imprecise suggestions e.g. 'be careful with timer' 'change the distance' 	2
	MP3. use wider range of distance readings (<0.62 or >1.38); MP4. use intermediate distances (between points);	_	

(Total for Question 5 = 12 marks)


Question number	Answer	Notes	Marks
6 (a)	standard definition of wavelength; e. • distance between two points on a wave/ two peaks/ two troughs • distance between each wavefront • distance travelled by wave in one time period	allow: from clear diagram crest for peak ignore: • 'the length of a wave' • 'distance taken for 1 cycle' • distance between one wave and the next one	1
6 (bi)	Speed of wave = frequency x wavelength;	allow: in any rearrangement $v = f.\lambda$	1
(bii)	substitution into any form of the equation; evaluation;		
	e. $3(m/s) = 1.5(Hz) \times \lambda$ $(\lambda) = 2(m);$	accept for 1 mark $\frac{3}{1.5}$	2

Question number	Answer	Notes	Marks
6 (ci)	Diffraction; And one of The incoming wave spreads out at the gap; The energy carried by the wave spreads out;	allow: • diffraction seen in (cii) • recognisable spelling for 'diffraction' ignore: • the wave gets bigger • wave is bent • (wavefront is) curved	2
6 (cii)	idea that (diffraction only apparent when) λ and size of gap comparable/RA; wavelength of light is very small / smaller than water waves /smaller than the gap;	Allow RA	2
		Total	8

Question number	Answer	Accept	Reject	Marks
7 (a) (i)	3;	Three /3.0		1
(ii)	0.002 (s) / 2 <u>m</u> s ; 500 (Hz) / 0.5 <u>k</u> Hz	0.001 ecf only if 2ai=6 correct answer without working for 2 marks 1000 ecf only if 2ai =6		2
(b)	All of waves at smaller amplitude (can vary); All of complete waves at higher frequency (can vary);	Any wave form Accept two diagrams that clearly show the candidate's intention		2

Total 5 marks

Question number	Answer	Notes	Marks
8 (a)	idea that higher frequency gives higher pitch;	allow reverse argument condone idea of proportionality / linearity	1
(b) (i)	(wave) speed = frequency × wavelength	allow abbreviation, e. $v = f \times \lambda$ or rearrangements	1
(ii)	substitution into correctly rearranged equation; evaluation; e. (v =) 340 / 160 (v =) 2.1 (m)	allow 2.125, 2.12, 2.13 or 2 (if supported)	2

(d)	any 2 from: MP1.speed (of sound) decreases (with temperature); MP2.frequency is constant;	allow 'sound slows down' ignore references to particle speed	2
	MP3.so wavelength decreases (with temperature);	allow λ is smaller	

Total 9 marks

	uest		Answer	Accept	Reject	Marks
9		(i)	(Signal has) two values;	On or off, 0 or 1, two signal strengths		2
			Only;	Binary		
		(ii)	Any two of The idea of increased frequency (of wave or modulation); The idea of regeneration (allowing more data to	send more bits/sparks, send morse code more quickly, send other letters		2
			arrive); The idea of using increased bandwidth; The idea of using additional (signal) level; The idea of multiplexing (e.g. use more than one channel);	The response should be about the signal, so ignore: idea of just sending a longer message using optical fibre(s)		
	(b)	(i)	(wave) speed = frequency x wavelength	$v = f x \lambda$ (accept rearrangements)		1
		(ii)	Substitution; Calculation; e.g.: 820 000 x 366 = 300 120 000 or 300 000 000 or 3 x 10 ⁸ (m/s)	Bald answer;; Power of ten error (for 1 mark) e.g. 300 000 m/s Alternative correct units (for 2 marks) e.g. 300 000 km /s		2

C	uestion	Answer	Α	Reject	Marks
number					
9	(c)	183 (m);			1
	(d)	Any three of: MP1 Electrons move OR there is a current Or negative charge moves; MP2 (Discharge) to earth OR across cloud OR to named object – tree, house, lightning conductor; MP3 Air conducts; MP4 Phenomenon e.g. thunder clap / lightning;	Sparks generate radio waves; Lightning causes (radio) interference; Correct reference to electrostatic attraction / repulsion;		3
				Total	11

Question number	Answer	Notes	Marks
10 (a)	D		1
(i) (ii)	C		1
(b)	f = 1/T (NO MARK) f= 1/5; 0.2 (Hz);	Bald 0.2 (Hz) scores 2 marks	2