UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9701 CHEMISTRY

9701/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	04

Section A

1 (a) acids are proton/H⁺ donors [1] bases are proton/H⁺ acceptors [1] **[2]**

(b) (i) more Cl atoms produce a **stronger acid** or the larger the K_a the **stronger the acid** (NOT just "the more Cl atoms, the larger the K_a " – must refer to acid strength) [1] because the anion/RCO₂⁻ is more stable or the O-H bond is weaker/polarised [1] due to the electronegativity/electron-withdrawing effect of Cl [1]

(ii)
$$[H^{+}] = \sqrt{(K_a.c)} = 0.0114 \text{ (mol dm}^{-3})$$
 [1]
pH = **1.94** (allow 1.9) ecf from $[H^{+}]$ [1]
(correct answer = [2])

(iii)

start at pH = 1.94 (ecf from (ii) and goes up > 2 pH units before steep portion) [1] steep portion (over at least 3 pH units) at $V = 10 \text{ cm}^3$ [1] flattens off at pH 12–13 [1] [8]

(c) (i)
$$CH_3CO_2H + OH^- \longrightarrow CH_3CO_2^- + H_2O$$
 [1]

$$CH_3CO_2^- + H^+ \longrightarrow CH_3CO_2H$$
 [1]

(ii)
$$pK_a = -log_{10}(1.7 \times 10^{-5}) = 4.77 \text{ or } [H^+] = 8.5 \times 10^{-6} \text{ (mol dm}^{-3})$$
 [1] $pH = pK_a + log_{10}(0.2/0.1) = 5.07 \text{ (allow 5.1)}$ [1] (correct answer = [2])

[Total: 14]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	04

2 (a) NaCl: steamy fumes [1]

 $NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl (or ionic, i.e. without the Na⁺)$

or
$$2NaCl + H_2SO_4 \longrightarrow Na_2SO_4 + 2HCl$$
 [1]

NaBr: orange/brown fumes [1]

$$2NaBr + 3H_2SO_4 \longrightarrow 2NaHSO_4 + 2H_2O + SO_2 + Br_2$$

$$2NaBr + 3H2SO4 \longrightarrow 2NaHSO4 + 2H2O + SO2 + Br2$$
or
$$2HBr + H2SO4 \longrightarrow 2H2O + SO2 + Br2$$
(ignore equations producing HBr) [1] [4]

(b) relevant E° quoted: Cl_2/Cl_1^{-} , 1.36; Br_2/Br_1^{-} , 1.07; $(H_2SO_4/SO_2, 0.17 - \text{not required})$ [1]

Br⁻ is more easily oxidised because its
$$E^{\circ}$$
 is more negative or Cl_2 is more oxidising because its E° is more positive [1] [2]

(c) Allow almost any reducing agent from the Data Booklet (see below) with E° less than 1.07 V.

But do not allow reducing agents that require conditions that would react with Br2 in the absence of the reducing agent (e.g. NH₃ or OH⁻), and also do not allow "reducing agents" that could produce, or act as, oxidising agents (e.g. MnO_4^{2-} and H_2O_2)

balanced equ. showing reduction of
$$Br_2$$
 by the chosen reducing agent (either ionic or molecular) [1] $E^0 = 1.07 - (E^0 \text{ of reductant}) = \mathbf{x.xx} (\mathbf{V}) \text{ (see below)}$ [1] [2]

[Total: 8]

List of acceptable reductants with resulting E°_{cell} values

reductant	E _{cell} /V	reductant	E _{cell} /V	reductant	E cell/V
Ag	0.27	Fe⇒Fe ²⁺	1.51	Na	3.78
Al	2.73	Fe⇒Fe³+	1.11	Ni	1.32
Ва	3.97	Fe ²⁺	0.30	Pb	1.20
Ca	3.94	H_2	1.07	SO ₂	0.90
Co	1.35	I_	0.53	$S_2O_3^{2-}$	0.98
$Cr \Rightarrow Cr^{2+}$	1.98	K	3.99	Sn	1.21
$Cr \Rightarrow Cr^{3+}$	1.81	Li	4.11	Sn ²⁺	0.92
Cr ²⁺	1.48	Mg	3.45	V	2.27
Cu⇒Cu⁺	0.55	Mn	2.25	V ²⁺	1.33
Cu⇒Cu ²⁺	0.73	NO_2	0.26	V ³⁺	0.73
Cu⁺	0.92	HNO ₂	0.13	VO ²⁺	0.07
		$NH_4^{^+}$	0.20	Zn	1.83

e.g. for
$$Sn^{2^+}$$
: $Sn^{2^+} + Br_2 \longrightarrow Sn^{4^+} + 2Br^-$ [1]
 $E^9 = 1.07 - 0.15 = 0.92 \text{ V}$

(or similarly for other suitable reagents)

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	04

- (a) a (d-block) element forming stable ions/compounds/oxidation states with incomplete/partially filled [NOT empty] d-orbitals[1] [1]
 - **(b) (i)** $(1s^2 2s^2 2p^6) 3s^2 3p^6 3d^3 4s^2$ [1]
 - (ii) $(1s^2 2s^2 2p^6) 3s^2 3p^6 3d^9$ [1] [2]
 - (c) (+)2, (+)3, (+)4, (+)5 or II, III, IV, V [1]
 - (d) (pale blue solution \Rightarrow) blue/cyan **solid/ppt**.(or (s) in the formula) [1]

(blue ppt. is) $Cu(OH)_2$ or copper hydroxide [1]

(then produces a) deep blue *or* purple **solution** [1]

which contains $[Cu(NH_3)_4]^{2+}$ or $[Cu(NH_3)_4(H_2O)_2]^{2+}$ [1]

formed by ligand replacement [1] [5]

(e)
$$2VO_3^- + 8H^+ + Cu \longrightarrow 2VO^{2+} + 4H_2O + Cu^{2+}$$

or $2VO_2^+ + 4H^+ + Cu \longrightarrow 2VO^{2+} + 2H_2O + Cu^{2+}$
correct species [1]
balancing [1]
(award only [1] for just the two half-equations) [2]

[Total: 11]

[5]

- 4 (a) (i) homogeneous [1]
 - (ii) ions in 2 and 3 are oppositely charged ions (thus attract each other) or ions in 1 are similarly charged ions (thus repel each other) [1]

(iii)

two contiguous activation humps[1]both less than the original[1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	04

- - (ii) the burning of fossil fuels/coal/oil/petrol/gas/diesel/fuel *or* car exhausts *or* roasting of sulphide ores *or* cement manufacture *or* volcanoes [1]
 - (iii) $SO_2 + NO_2 \longrightarrow SO_3 + NO$ [1]
 - $NO + \frac{1}{2}O_2 \longrightarrow NO_2$ [1]

[Total: 9]

- 5 (a) $CH_3CH_2CH_2CH_2OH$ $CH_3CH_2CH_2CH(OH)CH_3$ $CH_3CH_2CH(OH)CH_2CH_3$ A B C [2] (2 only = [1])
 - (b) B above (may be different letter) ([0] if more than one compound stated) [1]
 - (c) (i) B above (may be different letter) ([0] if more than one compound stated) [1]
 - (ii) (pale) yellow ppt. [1]
 - (iii) $CHI_3 + CH_3CH_2CO_2Na$ or anion (no credit for the acid, RCO_2H) [1] + [1] [4]
 - (d) $A \longrightarrow CH_3CH_2CH_2CO_2H$ [1]
 - $\mathbf{B} \longrightarrow \mathsf{CH}_3\mathsf{CH}_2\mathsf{COCH}_3 \tag{1}$
 - $C \longrightarrow CH_3CH_2COCH_2CH_3$ (letters may differ) [1] [3]

	Pa	ige 6	;	Mark Scheme: Teachers' version Sylla	bus	Paper	
				GCE A/AS LEVEL – May/June 2009 97	01	04	
	(e)	(i)	(C ₆ F	$H_{10}O_5)_n \longrightarrow 5n H_2 + 5n CO + n C$ correct species and the correct species and the correct species are correct species and the correct species and the correct species are correct species are correct species and the correct species are correct species and the correct species are correct s		[1] [1]	
		(ii)	ΔH	= $7(1080) + 15(436) - 6(350) - 16(410) - 14(460)$ = -1000 kJ mol ⁻¹			
			4 co	rrect values from DB (in bold italics above)		[1]	
			corre	ect multipliers ect signs and arithmetic rect answer = [3])		[1] [1]	
				ne ecf values for [2] marks (i.e. 1 error): for [1] mark (i.e. 2 of 2 of 2) for [2] mark (i.e. 2)	errors):		
			-135	50 (7 x (C-C) instead of 6) +1350 20 (7 x O-H instead of 14) -2220			
			-14°	10 (17 C-H instead of 16) +1410	L _ 4	-I\ 6	c - :
				omission of a type of bond (C-C is the most common one tarks, in addition to any other errors there may be.	nat is omitte	ed) for	feits [5]
					[Total:	15]
6	(a)	(i)		SOC l_2 or PC l_5 or HC l + ZnC l_2 or PC l_3 + heat or C l_2 + P + hea [NOT NaC l + H $_2$ SO $_4$] (mention of aq negates mark)	ıt	[1]	
			II:	NH ₃ (ignore any conditions stated)		[1]	
		(ii)	nucl	eophilic substitution or S _N or S _N 1 or S _N 2		[1]	
		(iii)	delo	calisation of lone pair on C $\it l$ over benzene ring produces a stronge	er C-C <i>l</i> bond	[1]	[4]
	(b)	(i)	III:	HNO ₃ + H ₂ SO ₄		[1]	
				both conc., and at T < 60°C		[1]	
			IV:	Sn + conc HC l [NOT LiA l H ₄ or H ₂ + Ni]		[1]	
		(ii)	III:	electrophilic substitution		[1]	
			IV:	reduction or redox		[1]	[5]
	(c)	e.g.		bromine water <i>or</i> Br ₂ (aq) (a solvent is needed for the mark)		[1]	
			pher	ndd UI solution hylamine decolorises the bromine or gives a white ppt., hexylamine becylamine turns UI blue, with phenylamine it stays green	ine does not	[1]	[2]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	04

(d)

[Total: 13]

Section B

7 (a) For each element, award [1] mark for each column in one particular line in the table below. The [2] marks awardable for each element are not conditional on each other, but don't take the location from one line and the role from another.

element	location	role
	red blood cells/haemoglobin	to bind to/carry/transfer oxygen (to cells) or CO ₂ (away from cells)
iron	muscle (cells)/myoglobin	to bind to/carry/transfer oxygen (to muscles) <i>or</i> CO ₂ (away from muscles)
	in mitochondria/cytochromes	to aid redox reactions or to help oxidise NADH etc
	in iron-sulphide proteins	to aid redox reactions
	in ferrodoxin	to aid redox reactions
sodium	in nerve cells/nerves/nervous system/neurones <i>or</i> in cell membranes/phospholipid bilayers	Na ⁺ /K ⁺ pump <i>or</i> ion pump <i>or</i> active transport <i>or</i> transmission/regulation of nerve impulses
	in kidneys	to help re-absorb glucose
	in blood ("cells" not needed, but "plasma" negates) or carbonic anhydrase	as an enzyme co-factor/prosthetic group <i>or</i> to help the hydration/removal of CO ₂ <i>or</i> production of H ₂ CO ₃ /HCO ₃ ⁻
zinc	in the gut/carboxypeptidase	as an enzyme co-factor/prosthetic group <i>or</i> to help hydrolyse polypeptides
	in the liver/alcohol dehydrogenase	as an enzyme co-factor/prosthetic group <i>or</i> to help oxidise/break down alcohol

[1] + [1] for each element [6]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	04

(b) (i) manufacture of NaOH or manufacture of batteries or manufacture of felt or gold extraction

or (mercury) fungicides or (mercury) compounds used in timber preservation [1]

(ii) In each case below, a balanced equation is worth [2] marks

breaks disulphide bonds/linkages *or* Hg bonds to S-H groups (*or* in an unbalanced equation) [1]

$$-CH_2$$
-S-S- CH_2 - + 4Hg⁺ → 2 $-CH_2$ -S-Hg + 2Hg²⁺
or R-S-S-R + 4Hg⁺ → 2 R-S-Hg + 2Hg²⁺ or R-S-S-R + Hg⁺ → 2 R-S-Hg⁺
or R-SH + Hg⁺ → R-SHg + H⁺ or R-SH + Hg²⁺ → R-S-Hg⁺ + H⁺
or 2 R-SH + Hg²⁺ → (R-S)₂Hg + 2 H⁺ etc [1]

bonds to carboxyl side chains (in amino acids) (or in an unbalanced equation) [1]

$$-CO_2H + Hg^+ \rightarrow -CO_2Hg + H^+ \text{ or } 2 \text{ RCO}_2H + Hg^{2+} \rightarrow (RCO_2)_2Hg + 2H^+ [1]$$

[5]

[11 max 10]

- (i) Partition coefficient (PC) is an equilibrium constant representing the distribution of a solute between two solvents.
 or PC = ratio of the concentrations of the solute in the two solvents or PC = [X]_a/[X]_b
 - (ii) If 0.4 g has been extracted, 0.1 g remain in the aqueous layer.

the concentration in the hexane layer = $\frac{0.4}{20}$ = 0.02 g cm⁻³

the concentration in the aqueous layer = $\frac{0.1}{100}$ = 0.001 g cm⁻³

$$K_{\rm pc} = 0.02/0.001 = 20$$
 [1]

(iii) 1^{st} extraction: hexane x/10 g cm⁻³ water (0.50-x)/100 g cm⁻³

$$K_{pc} = \frac{x/10}{(0.5 - x)/100} = 20$$

hence x/10 = (10 - 20x)/100100x = 10(10 - 20x) or 100x = 100 - 200x

$$x = 0.33 g$$
 [1]

 2^{nd} extraction: hexane $y/10 \,\mathrm{g}$ cm⁻³ water $(0.17 - y)/100 \,\mathrm{g}$ cm⁻³

$$K_{pc} = \frac{y/10}{(0.17 - y)/100} = 20$$

hence y/10 = (3.4 - 20y)/100100y = 10(3.4 - 20y) or 100y = 34 - 200y

$$y = 0.11 g$$
 [1]

total extracted = **0.44** g, *or* difference = **0.04** g *or* **10% more** (is extracted) [1] (correct answer = [3])

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	04

- (b) (i) berries are aqueous media [1]
 - PCBs are insoluble/sparingly soluble in water *or* more fat-soluble [1]
 - (ii) partition coefficient *or* [fat]/[water] is greater than 1 [1]

(c) (i) 4 (four) [1]

(ii)

correct spot circled [1]
correct spot squared [1]
[in each case, more than one spot circled or squared negates the mark]
[3]

[Total: 11]

[3]

9 (a) (i) correct diagram showing at least one monomer unit, and at least one N-H and C=O. i.e. -NH-C₆H₂-NH-CO- or -CO-C₆H₄-CO-NH-

(no mark for this, but apply a penalty of -[1] if candidate's diagram does NOT show these points correctly)

- one H-bond between N-H of original chain and C=O group of new chain [1] one H-bond between C=O of original chain and N-H group of new chain [1]
- (ii) hydrogen bonds or H-bonds (in words; can be written on diagram)(ignore ref to v d W)[1]

(iii)

allow NH₂-

[5]

Page 10	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	04

(b) (i) Water-hating/fearing/repelling/resistant or can't form bonds with water (molecules)
 [1] [NOT insoluble or does not dissolve in water, also NOT "non-polar"]

(ii) Fluorine-containing groups form van der Waals bonds (with the oil molecules)... [1] ...but cannot form hydrogen bonds (with the water molecules) [1]

(iii) Teflon/PTFE [1]

[Total: 9]