MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9701 CHEMISTRY
 9701/04 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Section A

1 (a) acids are proton $/ \mathrm{H}^{+}$donors bases are proton $/ \mathrm{H}^{+}$acceptors
(b) (i) more Cl atoms produce a stronger acid or the larger the K_{a} the stronger the acid (NOT just "the more Cl atoms, the larger the K_{a} " - must refer to acid strength) [1] because the anion $/ \mathrm{RCO}_{2}^{-}$is more stable or the $\mathrm{O}-\mathrm{H}$ bond is weaker/polarised [1] due to the electronegativity/electron-withdrawing effect of Cl
(ii) $\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(K_{\mathrm{a}} . \mathrm{C}\right)=0.0114\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
$\mathrm{pH} \quad=1.94$ (allow 1.9) ecf from $\left[\mathrm{H}^{+}\right]$
(correct answer = [2])
(iii)

start at $\mathrm{pH}=1.94$ (ecf from (ii) and goes up $>2 \mathrm{pH}$ units before steep portion)
steep portion (over at least 3 pH units) at $\mathrm{V}=10 \mathrm{~cm}^{3}$
flattens off at pH 12-13
ten
(c) (i) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{OH}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \tag{1}
\end{equation*}
$$

(ii) $\mathrm{pK}_{\mathrm{a}}=-\log _{10}\left(1.7 \times 10^{-5}\right)=4.77$ or $\left[\mathrm{H}^{+}\right]=8.5 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10}(0.2 / 0.1)=5.07$ (allow 5.1)
(correct answer = [2])

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	04

2 (a) NaCl : steamy fumes
$\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{NaHSO}_{4}+\mathrm{HCl}$ (or ionic, i.e. without the Na^{+})
or $\quad 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
NaBr : orange/brown fumes
$2 \mathrm{NaBr}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{NaHSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}+\mathrm{Br}_{2}$
or $\quad 2 \mathrm{HBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}+\mathrm{Br}_{2}$
(ignore equations producing HBr)
(b) relevant E° quoted: $\mathrm{Cl}_{2} / \mathrm{Cl}^{-}, 1.36 ; \mathrm{Br}_{2} / \mathrm{Br}^{-}, 1.07 ;\left(\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{SO}_{2}, 0.17\right.$ - not required)
Br^{-}is more easily oxidised because its E^{0} is more negative or Cl_{2} is more oxidising because its E° is more positive
[1] [2]
(c) Allow almost any reducing agent from the Data Booklet (see below) with E° less than 1.07 V .

But do not allow reducing agents that require conditions that would react with Br_{2} in the absence of the reducing agent (e.g. NH_{3} or OH^{-}), and also do not allow "reducing agents" that could produce, or act as, oxidising agents (e.g. $\mathrm{MnO}_{4}{ }^{2-}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$)
balanced equ. showing reduction of Br_{2} by the chosen reducing agent (either ionic or molecular)
$E^{\circ}=1.07-\left(E^{\ominus}\right.$ of reductant) = $\mathbf{x . x x}(\mathbf{V})$ (see below)
[Total: 8]
List of acceptable reductants with resulting $E^{\circ}{ }_{\text {cell }}$ values

reductant	$E_{\text {cell }}^{0} / \mathrm{V}$	reductant	$E_{\text {cell }}^{0} / \mathrm{V}$	reductant	$E_{\text {cell }}^{0} / \mathrm{V}$
Ag	0.27	$\mathrm{Fe} \Rightarrow \mathrm{Fe}^{2+}$	1.51	Na	3.78
Al	2.73	$\mathrm{Fe} \Rightarrow \mathrm{Fe}^{3+}$	1.11	Ni	1.32
Ba	3.97	Fe^{2+}	0.30	Pb	1.20
Ca	3.94	H_{2}	1.07	SO_{2}	0.90
Co	1.35	I^{-}	0.53	$\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$	0.98
$\mathrm{Cr} \Rightarrow \mathrm{Cr}^{2+}$	1.98	K	3.99	Sn	1.21
$\mathrm{Cr} \Rightarrow \mathrm{Cr}^{3+}$	1.81	Li	4.11	Sn	0.92
Cr^{2+}	1.48	Mg	3.45	V	2.27
$\mathrm{Cu} \Rightarrow \mathrm{Cu}^{+}$	0.55	Mn	2.25	$\mathrm{~V}^{2+}$	1.33
$\mathrm{Cu} \Rightarrow \mathrm{Cu}^{2+}$	0.73	NO_{2}	0.26	$\mathrm{~V}^{3+}$	0.73
Cu^{+}	0.92	HNO_{2}	0.13	VO^{2+}	0.07
		NH_{4}^{+}	0.20	Zn	1.83

e.g. for $\mathrm{Sn}^{2+}: \mathrm{Sn}^{2+}+\mathrm{Br}_{2} \longrightarrow \mathrm{Sn}^{4+}+2 \mathrm{Br}^{-}$

$$
\begin{equation*}
E^{0}=1.07-0.15=0.92 \mathrm{~V} \tag{1}
\end{equation*}
$$

(or similarly for other suitable reagents)

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	04

3 (a) a (d-block) element forming stable ions/compounds/oxidation states with incomplete/ partially filled [NOT empty] d-orbitals
(b) (i) $\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{3} 4 s^{2}$
(ii) $\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{9}$
[1] [2]
(c) (+)2, (+)3, (+)4, (+)5 or II, III, IV, V
(d) (pale blue solution \Rightarrow) blue/cyan solid/ppt.(or (s) in the formula)
(blue ppt. is) $\mathrm{Cu}(\mathrm{OH})_{2}$ or copper hydroxide
(then produces a) deep blue or purple solution
which contains $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ or $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$
formed by ligand replacement
(e) $\quad 2 \mathrm{VO}_{3}^{-}+8 \mathrm{H}^{+}+\mathrm{Cu} \longrightarrow 2 \mathrm{VO}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cu}^{2+}$
or $2 \mathrm{VO}_{2}^{+}+4 \mathrm{H}^{+}+\mathrm{Cu} \longrightarrow 2 \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cu}^{2+}$
correct species
balancing
(award only [1] for just the two half-equations)

4 (a) (i) homogeneous
(ii) ions in $\mathbf{2}$ and $\mathbf{3}$ are oppositely charged ions (thus attract each other) or ions in 1 are similarly charged ions (thus repel each other)
(iii)

two contiguous activation humps [1]
both less than the original
starting and finishing at the same points as before

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	04

(b) (i) SO_{3} produces acid rain or $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ or a consequence of acid rain, e.g. lower pH of lakes; leaches aluminium from soils; kills fish/plants/rainforests; dissolves/corrodes/damages buildings (NOT global warming)
(NOT asthma etc - since this is not environmental)
(ii) the burning of fossil fuels/coal/oil/petrol/gas/diesel/fuel or car exhausts or roasting of sulphide ores or cement manufacture or volcanoes
(iii) $\mathrm{SO}_{2}+\mathrm{NO}_{2} \longrightarrow \mathrm{SO}_{3}+\mathrm{NO}$
$\mathrm{NO}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{NO}_{2}$

A
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
B
all three (any order)
(2 only = [1])
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$
C
[2]
(b) B above (may be different letter) ([0] if more than one compound stated)
[1] [1]
(c) (i) \mathbf{B} above (may be different letter) ([0] if more than one compound stated)
(ii) (pale) yellow ppt.
(iii) $\mathrm{CHI}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Na}$ or anion (no credit for the acid, $\mathrm{RCO}_{2} \mathrm{H}$)
(d) $\mathrm{A} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{B} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
C $\longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3} \quad$ (letters may differ)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	04

(e) (i) $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{\mathrm{n}} \longrightarrow 5 \mathrm{n}_{2}+5 \mathrm{nCO}+\mathrm{nC}$ correct species and the 5:5:1 ratio [1] (allow n 5 instead of 5 n) balancing, i.e. multiplying by $\mathrm{n} \quad$ [1]
(ii) $\Delta H=7(1080)+15(436)-6(350)-16(410)-14(460)$

$$
=-1000 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

4 correct values from DB (in bold italics above)
correct multipliers
correct signs and arithmetic
(correct answer = [3])
Some ecf values for [2] marks (i.e. 1 error): for [1] mark (i.e. 2 errors):
+1000 (signs reversed)
-1350 ($7 \times(\mathrm{C}-\mathrm{C}$) instead of 6) $\quad+1350$
+2220 (7 x O-H instead of 14) -2220
-1410 (17 C-H instead of 16) +1410
The omission of a type of bond (C-C is the most common one that is omitted) forfeits 2 marks, in addition to any other errors there may be.
[Total: 15]

6 (a) (i) I: $\begin{aligned} & \mathrm{SOCl}_{2} \text { or } \mathrm{PCl}_{5} \text { or } \mathrm{HCl}+\mathrm{ZnCl}_{2} \text { or } \mathrm{PCl}_{3}+\text { heat or } \mathrm{Cl}_{2}+\mathrm{P}+\text { heat } \\ & \\ & \\ & \\ & \\ & \\ & \text { (mot }\end{aligned}$
II: NH_{3} (ignore any conditions stated)
(ii) nucleophilic substitution or S_{N} or $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$
(iii) delocalisation of lone pair on Cl over benzene ring produces a stronger $\mathrm{C}-\mathrm{Cl}$ bond [1]
(b) (i) III: $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$
both conc., and at $\mathrm{T}<60^{\circ} \mathrm{C}$
IV: $\mathrm{Sn}+$ conc HCl [NOT $\mathrm{LiA}_{2} \mathrm{H}_{4}$ or $\left.\mathrm{H}_{2}+\mathrm{Ni}\right]$
(ii) III: electrophilic substitution

IV: reduction or redox
(c) e.g. add bromine water or $\mathrm{Br}_{2}(\mathrm{aq})$ (a solvent is needed for the mark)
or add UI solution
phenylamine decolorises the bromine or gives a white ppt., hexylamine does not
or hexylamine turns UI blue, with phenylamine it stays green

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	04

(d)

(allow + charge on either N) (allow double or triple bond)
[1]

(phenylazo group must be at 4-position to -OH) ($\mathrm{N}=\mathrm{N}$ must be double bond, not triple)
[1]
[Total: 13]

Section B

7 (a) For each element, award [1] mark for each column in one particular line in the table below. The [2] marks awardable for each element are not conditional on each other, but don't take the location from one line and the role from another.

element	location	role
iron	red blood cells/haemoglobin	to bind to/carry/transfer oxygen (to cells) or CO_{2} (away from cells)
	muscle (cells)/myoglobin	to bind to/carry/transfer oxygen (to muscles) or CO_{2} (away from muscles)
	in mitochondria/cytochromes	to aid redox reactions or to help oxidise NADH etc
	in iron-sulphide proteins	to aid redox reactions
	in ferrodoxin	to aid redox reactions
sodium	in nerve cells/nerves/nervous system/neurones or in cell membranes/phospholipid bilayers	$\mathrm{Na}^{+} / \mathrm{K}^{+}$pump or ion pump or active transport or transmission/regulation of nerve impulses
	in kidneys	to help re-absorb glucose
zinc	in blood ("cells" not needed, but "plasma" negates) or carbonic anhydrase	as an enzyme co-factor/prosthetic group or to help the hydration/removal of CO_{2} or production of $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}{ }^{-}$
	in the gut/carboxypeptidase	as an enzyme co-factor/prosthetic group or to help hydrolyse polypeptides
	in the liver/alcohol dehydrogenase	as an enzyme co-factor/prosthetic group or to help oxidise/break down alcohol

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	04

(b) (i) manufacture of NaOH or manufacture of batteries or manufacture of felt or gold extraction
or (mercury) fungicides or (mercury) compounds used in timber preservation
(ii) In each case below, a balanced equation is worth [2] marks
breaks disulphide bonds/linkages or Hg bonds to S-H groups (or in an unbalanced equation)
$-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{S}_{-\mathrm{CH}_{2}-}+4 \mathrm{Hg}^{+} \rightarrow 2-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{Hg}+2 \mathrm{Hg}^{2+}$
or R-S-S-R $+4 \mathrm{Hg}^{+} \rightarrow 2$ R-S-Hg $+2 \mathrm{Hg}^{2+}$ or $\mathrm{R}-\mathrm{S}-\mathrm{S}-\mathrm{R}+\mathrm{Hg}^{+} \rightarrow 2 \mathrm{R}-\mathrm{S}^{2}-\mathrm{Hg}^{+}$
or $\mathrm{R}-\mathrm{SH}+\mathrm{Hg}^{+} \rightarrow \mathrm{R}-\mathrm{SHg}+\mathrm{H}^{+}$or $\mathrm{R}-\mathrm{SH}+\mathrm{Hg}^{2+} \rightarrow \mathrm{R}-\mathrm{S}-\mathrm{Hg}^{+}+\mathrm{H}^{+}$
or $2 \mathrm{R}-\mathrm{SH}+\mathrm{Hg}^{2+} \rightarrow(\mathrm{R}-\mathrm{S})_{2} \mathrm{Hg}+2 \mathrm{H}^{+}$etc
bonds to carboxyl side chains (in amino acids) (or in an unbalanced equation)

$$
\begin{equation*}
-\mathrm{CO}_{2} \mathrm{H}+\mathrm{Hg}^{+} \rightarrow-\mathrm{CO}_{2} \mathrm{Hg}+\mathrm{H}^{+} \text {or } 2 \mathrm{RCO}_{2} \mathrm{H}+\mathrm{Hg}^{2+} \rightarrow\left(\mathrm{RCO}_{2}\right)_{2} \mathrm{Hg}+2 \mathrm{H}^{+}[1] \tag{1}
\end{equation*}
$$

8 (a) (i) Partition coefficient (PC) is an equilibrium constant representing the distribution of a solute between two solvents.
or $\mathrm{PC}=$ ratio of the concentrations of the solute in the two solvents or $\mathrm{PC}=[\mathrm{X}]_{a} /[\mathrm{X}]_{\mathrm{b}}$
(ii) If 0.4 g has been extracted, 0.1 g remain in the aqueous layer.
the concentration in the hexane layer $=\frac{0.4}{20}=0.02 \mathrm{~g} \mathrm{~cm}^{-3}$
the concentration in the aqueous layer $=\frac{0.1}{100}=0.001 \mathrm{~g} \mathrm{~cm}^{-3}$

$$
\begin{equation*}
K_{\mathrm{pc}}=0.02 / 0.001=\mathbf{2 0} \tag{1}
\end{equation*}
$$

(iii) $1^{\text {st }}$ extraction: hexane $x / 10 \mathrm{~g} \mathrm{~cm}^{-3}$
water $(0.50-x) / 100 \mathrm{~g} \mathrm{~cm}^{-3}$

$$
\begin{aligned}
& K_{\mathrm{pc}}=\frac{\mathrm{x} / 10}{(0.5-\mathrm{x}) / 100}=20 \\
& \text { hence } \begin{array}{l}
x / 10=(10-20 x) / 100 \\
\\
100 x=10(10-20 x) \text { or } 100 x=100-200 x
\end{array}
\end{aligned}
$$

$$
\begin{equation*}
x=0.33 \mathrm{~g} \tag{1}
\end{equation*}
$$

$2^{\text {nd }}$ extraction: hexane $y / 10 \mathrm{~g} \mathrm{~cm}^{-3} \quad$ water $(0.17-y) / 100 \mathrm{~g} \mathrm{~cm}^{-3}$
$K_{\mathrm{pc}}=\frac{\mathrm{y} / 10}{(0.17-\mathrm{y}) / 100}=20$
hence $y / 10=(3.4-20 y) / 100$ $100 y=10(3.4-20 y)$ or $100 y=34-200 y$

$$
\begin{equation*}
y=0.11 \mathrm{~g} \tag{1}
\end{equation*}
$$

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	04

(b) (i) berries are aqueous media

PCBs are insoluble/sparingly soluble in water or more fat-soluble
(ii) partition coefficient or [fat]/[water] is greater than 1
(c) (i) 4 (four)
(ii)

correct spot circled
correct spot squared
[in each case, more than one spot circled or squared negates the mark]

9 (a) (i) correct diagram showing at least one monomer unit, and at least one $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$.
i.e. $-\mathrm{NH}-\mathrm{C}_{6} \mathrm{H}_{2}-\mathrm{NH}-\mathrm{CO}$ or $-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}-\mathrm{NH}-$
(no mark for this, but apply a penalty of -[1] if candidate's diagram does NOT show these points correctly)
one H -bond between $\mathrm{N}-\mathrm{H}$ of original chain and $\mathrm{C}=\mathrm{O}$ group of new chain
one H -bond between $\mathrm{C}=\mathrm{O}$ of original chain and $\mathrm{N}-\mathrm{H}$ group of new chain
(ii) hydrogen bonds or H -bonds (in words; can be written on diagram) (ignore ref to vd W)
(iii)

Page 10	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	04

(b) (i) Water-hating/fearing/repelling/resistant or can't form bonds with water (molecules)
[NOT insoluble or does not dissolve in water, also NOT "non-polar"]
(ii) Fluorine-containing groups form van der Waals bonds (with the oil molecules)... [1]
...but cannot form hydrogen bonds (with the water molecules)
(iii) Teflon/PTFE

