UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Paper	•
		GCE AS/A LEVEL – May/June 2010	9702	21	
1	c mega tera			B1 B1 B1	[4]
2	(a) scalar scalar vector			B1	[3]
		radient (of graph) is the speed/velocity (can be scored in the state of the scored in			[2]
	2 g	radient (of line/graph) becomes constant		B1	[1]
		ed = (2.8 ± 0.1) m s ⁻¹ nswer > ± 0.1 but $\leq \pm 0.2$, then award 1 mark)		A2	[2]
	con	ved line never below given line and starts from zero tinuous curve with increasing gradient never vertical or straight		B1	[3]
3	or energy	energy (stored)/work done represented by area under genergy = <u>average</u> force × extension = ½ × 180 × 4.0 × 10 ⁻² = 3.6 J		C1	[3]
	. , . ,	er momentum before release is zero so sum of momenta (of trolleys) after release is zero force = rate of change of momentum (M1) force on trolleys equal and opposite (A1) impulse = change in momentum (M1) impulse on each equal and opposite (A1)	o	A1	[2]
	(ii) 1 /	$M_1V_1 = M_2V_2$		B1	[1]
	2 <u>E</u>	$= \frac{1}{2} M_1 V_1^2 + \frac{1}{2} M_2 V_2^2 \qquad$		B1	[1]
	(iii) 1 E	$E_{\rm K} = \frac{1}{2}mv^2$ and $p = mv$ combined to give		M1 A0	[1]
		p smaller, $E_{\rm K}$ is larger because p is the same/constant o trolley B			[1]

Page 3		ge 3			Paper	
			GCE AS/A LEVEL – May/June 2010	9702	21	
4	(a)		vave (front) passes by/incident on an edge/slit nds/spreads (into the geometrical shadow)			[2]
	(b)	$\tan \theta = \frac{1}{2}$	<u>38</u> 165			
		d = 2.82	× 10 ⁻⁶		C1	
		number :	$= (1/d =) 3.6 \times 10^5$		A1	[4]
	(c)		s in same position			
		X and Y	rotate through 90°		B1	[2]
	(d)		creen not parallel to grating			
		or g	rating not normal to (incident) light		B1	[1]
5	(a)	region/ar	rea where a charge experiences a force		B1	[1]
	(b)	(i) left-l	nand sphere (+), right-hand sphere (–)		B1	[1]
	` '					
			orrect region labelled C within 10 mm of central part on the within 5 mm of plate		B1	[1]
		2 c	orrect region labelled D area of field not included for (b)(ii)1	B1	[1]
	(c)	(i) arro	ws through P and N in correct directions		B1	[1]
		(ii) torqu	ue = force × perpendicular distance (between forces)		C1	
			= $1.6 \times 10^{-19} \times 5.0 \times 10^4 \times 2.8 \times 10^{-10} \times \sin 30$ = 1.1×10^{-24} N m		A1	[2]
6	(a)	(i) P =	VI		C1	
			12 × <i>I</i> 5.(0) A		A1	[2]
		(ii) eithe	$P = IR \qquad or P = I^2R or P = V^2/R \dots$		C1	
			er 12 = $5 \times R$ or $60 = 5^2 \times R$ or $60 = 12^2/R$			[2]
	(b)	$R = \rho L/A$	l		C1	
	` ,	$A = \pi \times ($	$0.4 \times 10^{-3})^2 (= 5.03 \times 10^{-7})$		C1	
		$L = (2.4 \times 5.03 \times 10^{-7})/(1.0 \times 10^{-6})$ = 1.2 m		A1	[3]	
	(c)	resistano	ee is halved		M1	
	` '	either cu	rrent is doubled or power ∞ 1/R		M1	
		power is	doubled		A1	[3]

	Page 4			Mark Scheme: Teachers' version	Syllabus	Pape	er
				GCE AS/A LEVEL – May/June 2010	9702	21	
7	(a)			oms with same proton number/atomic numberoms contain different numbers of neutrons/different atoms			[2]
	(b)	(i)	92			A1	[1]
		(ii)	146			A1	[1]
	(c)	(i)	mas	$s = 238 \times 1.66 \times 10^{-27}$ = 3.95 × 10 ⁻²⁵ kg		C1 A1	[2]
		(ii)	volu	me = $\frac{4}{3}\pi \times (8.9 \times 10^{-15})^3$ (= 2.95 × 10 ⁻⁴²)		C1	
			dens	sity = $(3.95 \times 10^{-25})/(2.95 \times 10^{-42})$ = 1.3×10^{17} kg m ⁻³		A1	[2]
	(d)			contains <u>most</u> of mass of atom		B1	
				n is mostly (empty) space		B1	[2]