Please check the examination details	below before er	ntering your candidate information			
Candidate surname	Other names				
Pearson Edexcel International Advanced Level Centre Number Candidate Numbe					
Tuesday 22 Oc	tobe	r 2019			
Morning (Time: 1 hour 20 minutes)	Paper	Reference WCH13/01			
Chemistry International Advanced					
Unit 3: Practical Skills in	Chemist	ry I			

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- There is a Periodic Table on the back cover of this paper.

Advice

- Read each guestion carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over

P61658A

©2019 Pearson Education Ltd.

1/1/1/1/1/

Answer ALL the questions.

Write your answers in the spaces provided.

- 1 A series of tests is carried out on a solid compound **A** and an agueous solution **B**.
 - (a) Compound A contains one cation and one anion.

Complete the inferences.

(i) A flame test is carried out on A.

(1)

Observation	Inference
Yellow flame colour	The formula of the cation in A is

(ii) A small amount of solid A is placed in a test tube and heated strongly. A glowing splint is held in the mouth of the test tube.

(2)

Observation	Inference
The glowing splint relights	The gas formed is
	The formula of the anion in A could be

(b) A series of tests is carried out on aqueous solution **B**.

Complete the inferences.

(i) A piece of magnesium ribbon is added to 5 cm³ of **B** in a test tube.

A lighted splint is held over the mouth of the test tube.

(2)

Observation	The gas is The formula of the cation in B is	
Bubbles of gas are given off	The gas is	
The gas burns with a squeaky pop	The formula of the cation in B is	

(ii) Silver nitrate solution acidified with dilute nitric acid is added to another 5 cm³ of B in a test tube.

(2)

Observation	The name or formula of the precipitate is The name or formula of solution B is	
White precipitate forms		

(Total for Question 1 = 7 marks)

3

Turn over ▶

- 2 Tests are carried out to identify three organic liquids, C, D and E.
 - (a) A spatula measure of phosphorus(V) chloride, PCl_s, is added to each liquid in separate test tubes.

Any gas given off is tested with damp blue litmus paper.

	Observation	
с	D	Е
Misty fumes are given off	Misty fumes are given off	No change
Damp blue litmus paper turns red	Damp blue litmus paper turns red	

Identify, by name or formula, the misty fumes produced by liquids C and D.

(1)

(b) 2 cm³ of aqueous sodium carbonate, Na₂CO₃(aq), is added to each liquid in separate test tubes.

Any gas given off is tested with limewater.

	Observation	
с	D	E
Bubbles of a colourless gas are given off	No change	No change
Limewater turns cloudy		

Identify, by name or formula, the gas produced by liquid **C**.

(1)

- (c) Each of the compounds **C**, **D** and **E** contains three carbon atoms and one functional group, which is on the end of the carbon chain.
 - (i) Using this information and the results from parts (a) and (b), deduce the structures of **C** and **D**.

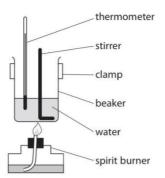
(2)

Structure of C	Structure of D		

(ii) The mass spectrum of **E** has a molecular ion peak at m/z = 58.

Using this information and the information in (c), deduce the structure of E.

(1)


Structure of E					

(iii) Give a chemical test and its positive result to confirm the identity of the functional group in **E**.

(2)

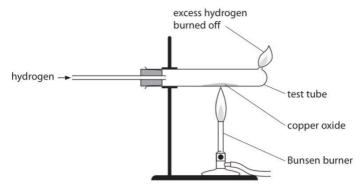
P	6	1	6	5	8 /	A	0	5	1	6	

(d) The apparatus shown was used to find the enthalpy change of combustion of one of the liquids **C**, **D** or **E**.

(i) List all the measurements you would make in carrying out this experiment.

(3)

(ii) Give two ways, other than changing the measuring instruments or repeating the experiment, in which the accuracy of the results using this apparatus could be improved.


(2)

(Total for Question 2 = 12 marks)

3 An experiment is carried out to determine the formula of an oxide of copper.

A sample of the copper oxide is reduced to copper by hydrogen gas using the apparatus shown.

Procedure

- Step 1 Weigh the empty test tube.
- Step 2 Place two spatula measures of copper oxide in the test tube and reweigh.
- Step 3 Pass hydrogen into the test tube and, after a delay of a few seconds, light the gas at the hole at the end of the test tube.
- Step 4 Start heating the copper oxide.
- Step **5** After the copper oxide has been completely reduced, turn off the Bunsen burner, but continue to pass hydrogen over the product until it has cooled down.
- Step 6 Weigh the test tube and copper.
- (a) Give a reason why, in Step 3, there should be a delay of a few seconds before lighting the hydrogen at the end of the test tube.

(1)

(b) (i) Complete the table of results.

Measurement	Mass/g
Mass of test tube	40.27
Mass of test tube and copper oxide	43.42
Mass of test tube and copper	42.79
Mass of copper in copper oxide	
Mass of oxygen in copper oxide	

(ii) Use these results to calculate the formula of this copper oxide.

You must show your working.

[
$$A_r$$
 values: $Cu = 63.5 O = 16.0$]

(3)

(1)

P		 8 A			

Turn over ▶

(1)

(2)

- 4 An experiment is carried out to determine the molar mass of a solid acid, H₂X.
 - (a) Describe how 250.0 cm³ of a standard solution should be prepared using a pre-weighed sample of 1.13 q of H₂X.

(4)

(b) $25.0\,\mathrm{cm^3}$ of this $\mathrm{H_2X}$ solution was pipetted into a conical flask and titrated with $0.213\,\mathrm{mol\,dm^{-3}}$ sodium hydroxide solution.

The equation for the reaction is

$$H_2X(aq) + 2NaOH(aq) \rightarrow Na_2X(aq) + 2H_2O(I)$$

(i) The indicator used was phenolphthalein.

State the colour **change** at the end-point.

(1)

Results

Number of titration	1	2	3
Final burette reading/cm ³	12.20	24.10	11.75
Initial burette reading/cm ³	0.00	12.20	0.05
Volume of NaOH used/cm ³	12.20	11.90	11.70

(ii) Using appropriate titrations, calculate the mean titre in cm³.

(1)

(iii) Calculate the number of moles of H₂X in the 250.0 cm³ of solution.

(3)

(iv) Calculate the molar mass of H₂X, using your answer in (b)(iii) and the mass of H₂X given.

Give your answer to an appropriate number of significant figures.

(2)

11

Turn over ▶

(c)	Th	e maximum uncertainty each time a burette is read is ± 0.05 cm ³ .									
	(i)	Calculate the percentage uncertainty in measuring the 11.70 cm ³ of sodium hydroxide used in titration 3 .	(1)								
	(ii)	The percentage uncertainties in the three titrations are similar.									
	Suggest how the percentage uncertainty in a burette measurement could be reduced, without changing the apparatus.										
		Justify your answer.	(2)								
(Total for Question 4 = 14 marks)											

- 5 Limonene, an oil, can be extracted from oranges in four steps.
 - (a) In Step 1, grated orange peel is added to some distilled water. The mixture is heated under reflux for about 10 minutes.

Draw a labelled diagram of the apparatus used to reflux the mixture.

(3)

13

Turn over ▶

(b) In Step 2 the mixture from Step 1 is distilled. The distillate contains a mixture of limonene and water.

In Step **3** the limonene and water mixture from Step **2** is poured into a separating funnel and pentane is added.

Limonene is much more soluble in pentane than in water.

The density of pentane is $0.626\,\mathrm{g\,cm^{-3}}$

(i) Complete the diagram of the separating funnel by drawing the aqueous and pentane layers and labelling them.

(1)

(ii) Describe how the separating funnel is used to obtain the pentane layer.

(2)

- (c) In Step **4** the pentane is allowed to evaporate in a fume cupboard, leaving limonene.
 - 150 mg of limonene is produced from 23.0 g of orange peel.

 $\label{lem:calculate} \textbf{Calculate the percentage of limonene, by mass, extracted from the orange peel.}$

(1)

(d) 0.001 mol of limonene decolourised 0.32g of bromine, Br₂.

Explain what these results tell you about the structure of limonene.

[Use M_r (Br₂) = 160]

(2)

(Total for Question 5 = 9 marks)

TOTAL FOR PAPER = 50 MARKS

[257] ۲

nobelium 254] No 102

mendeleviu 256] PW 69

[253] Fm fermium

[251] Cf californiu 99

[245] **BK** berkelium 65

Cm curium 96

Am

Pu Pu plutonium 94

Np neptunium 93

U uranium 92

9

90

Pa 59

232 **Th** thorium

samarium europium 62 63 [243]

254] Es 67

101

100

66

86

97

95

The Periodic Table of Elements

0 (8)	4.0 He hetium 2	20.2	Ne neon	39.9	Ar	argon 18	83.8	추	krypton 36	131.3	Xe	xenon 54	[222]	R	radon 86		ted					
7	(77)	19.0	F fluorine 9	35.5	บ	chlorine 17	79.9	B	bromine 35	126.9	_	fodine 53	[210]	At	astatine 85		seen repor			175		lutetium 71
9	(16)	16.0	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	Te	tellurium 52	[209]	Ъ	polonium 84		116 have t	iticated		173	ХÞ	ytterbium 70
2	(15)	14.0	N nitrogen 7	31.0	۵	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		mbers 112.	but not fully authenticated		169	μ	thulium 69
4	(14)	12.0	C carbon 6	28.1	Si	silicon 14	72.6	Ge	germanium 32	118.7	Sn	tiu 20	207.2	Ъ	lead 82		atomic nu	but not f		167	ᆸ	erbium 68
3	(13)	10.8	B boron 5	27.0	A	aluminium 13	69.7	Ga	gallium 31	114.8	ī	indium 49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported			165	운	holmium 67
						(12)	65.4	Zn	zinc 30	112.4	В	cadmium 48	200.6	Ŧ	mercury 80		Eler			163	Dy	dysprosium holmium 67
						(11)	63.5	J	copper 29	107.9	Ag	silver 47	197.0	Αn	plog 79	[272]	Rg	10e		159		terbium 65
						(10)	58.7	ź	nickel 28	106.4	Pd	palladium 46	195.1	£	platinum 78	[271]	Ds	damstadtium	2	157	В	gadolinium 64
						(6)	58.9	ပိ	cobalt 27	102.9	R	rhodium 45	192.2	ı	iridium 77	[268]	Mt	meitnerium	103	152	En	europium 63
	1.0 hydrogen					(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	o	osmium 76	[277]	Hs	hassium	100	150	Sm	samarium 62
						(7)	54.9	Wn	manganese 25	[86]	7	technetium 43	186.2	Re	rhenium 75	[264]	Bh	bohrium 107	101	[147]	Pm	praseodymium promethium samarium europium 59 60 61 63 63
		mass	bol			(9)	52.0		÷	95.9	Wo	molybdenum 42	183.8	≯	tungsten 74	[566]	Sg	seaborgium bo	001	144	P	neodymium 60
	Key	relative atomic mass	atomic symbol name atomic (proton) number			(5)	50.9	>	vanadium 23	92.9	Q N	niobium 41	180.9	Тa	tantalum 73	[262]		dubnium	-11	141	P	ргазеодутіцт 59
		relat	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]	R	nutherfordium	1	140	S	cerium 58
						(3)	45.0	Sc	scandium 21	88.9	>	yttrium 39	138.9	La*	lanthanum 57	[227]	Ac*	actinium	60		Sa	
2	(2)	9.0	Be beryllium 4	24.3	Mg	magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3	Ba	barium 56	[526]	Ra	radium	00		* Lanthanide series	* Actinide series
-	(£)	6.9	Li lithium 3	23.0	Na	sodium 11	39.1	¥	potassium 19	85.5	В	rubidium 37	132.9	S	caesium 55	[223]	뇬	francium 97	6		* Lanth	* Actini
																			_			

