## Mark Scheme (Results)

## January 2021

Pearson Edexcel International Advanced Level In Chemistry (WCH14)
Paper 1: Rates, Equilibria and Further Organic Chemistry

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code WCH14_01_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## Using the mark scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit. ( ) means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

## Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to: - write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

## Section A

| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{1}$ | The only correct answer is A (carbon dioxide, $\mathrm{CO}_{2}$ ) | (1) |
|  | B is not correct because copper is a solid at 298 K and 1 atm pressure so has the lowest entropy <br> C is not correct because ethanol is a liquid at 298 K and 1 atm pressure and has a lower entropy than a gas <br> $\boldsymbol{D}$ is not correct because hydrogen is also a gas at 298 K and 1 atm pressure, but its molecules are smaller than <br> carbon dioxide molecules |  |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 2 | The only correct answer is B (reactions $\mathbf{P}$ and $\mathbf{Q}$ only) <br> $\boldsymbol{A}$ is not correct because both reactions $\boldsymbol{P}$ and $\boldsymbol{Q}$ have a positive value for $\Delta S_{\text {total }}$ <br> $\boldsymbol{C}$ is not correct because reaction $\boldsymbol{R}$ has a negative value for $\Delta S_{\text {total }}$ so is not feasible <br> $\boldsymbol{D}$ is not correct because both reactions $\boldsymbol{R}$ and $\boldsymbol{S}$ have a negative value for $\Delta S_{\text {total }}$ so are not feasible | (1) |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{3}$ | The only correct answer is A $\quad(1 / 2 \operatorname{Br}(1) \rightarrow \operatorname{Br}(\mathrm{g}))$ | (1) |
|  | B is not correct because the standard enthalpy change of atomisation refers to the formation of 1 mol of atoms <br> C is not correct because bromine's standard state is as a liquid <br> $\boldsymbol{D}$ is not correct because bromine exists as diatomic molecules in the liquid state in its standard state and only <br> 1 mol of atoms should be formed |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| 4(a) | The only correct answer is C $\quad$(potassium bromide) <br> $\boldsymbol{A}$ is not correct because the least exothermic lattice energy is between the largest ions with the smallest charge <br> and calcium ions are smaller and have a higher charge than potassium ions <br> $\boldsymbol{B}$ is not correct because the least exothermic lattice energy is between the largest ions with the smallest charge <br> and magnesium ions are smaller and have a higher charge than potassium ions <br> $\boldsymbol{D}$ is not correct because sodium ions are smaller than potassium ions | (1) |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: | :---: |
| 4(b) | The only correct answer is B $\quad$ (magnesium chloride ) | (1) |
|  | A is not correct because $C a^{2+}$ ions are larger than magnesium ions so will polarise less <br> C is not correct because $K^{+}$ions are larger than magnesium ions and have a lower charge so will polarise less <br> $\boldsymbol{D}$ is not correct because Na ${ }^{+}$ions are larger than magnesium ions and have a lower charge so will polarise less |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{5}$ | The only correct answer is C (the total entropy when KCl dissolves is positive) | (1) |
|  | $\boldsymbol{A}$ is not correct because the enthalpy change of hydration for all ions and lattice energy for all ionic compounds <br> are exothermic so this does not explain why KCl is soluble <br> $\boldsymbol{B}$ is not correct because the enthalpy change of hydration for all ions and lattice energy for all ionic compounds <br> are exothermic <br> $\boldsymbol{D}$ is not correct because the total entropy must be positive for a spontaneous reaction |  |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 6 | The only correct answer is A $\left(3.61 \times 10^{-5}\right)$ <br> $\boldsymbol{B}$ is not correct because $R$ and $\Delta S_{\text {total }}$ are the wrong way up <br> C is not correct because the temperature should not be included <br> D is not correct because the negative sign for $\Delta S_{\text {total }}$ has been omitted | (1) |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 7 | The only correct answer is $\mathbf{A} \quad\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}^{+} \rightleftharpoons \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{O}^{+} \mathrm{H}\right) \mathrm{CH}_{3}\right.$ fast, <br> $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{O}^{+} \mathrm{H}\right) \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})=\mathrm{CH}_{2}+\mathrm{H}^{+}$slow, $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})=\mathrm{CH}_{2}+\mathrm{I}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{I}+$ HI fast $)$ <br> $\boldsymbol{B}$ is not correct because the steps up to and including the slow step must include $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and $\mathrm{H}^{+}$ions and $\mathrm{I}_{2}$ must only be involved in a fast step <br> $\boldsymbol{C}$ is not correct because the steps up to and including the slow step must include $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and $\mathrm{H}^{+}$ions and $\mathrm{I}_{2}$ must only be involved in a fast step <br> D is not correct because the steps up to and including the slow step must include $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and $\mathrm{H}^{+}$ions and $\mathrm{I}_{2}$ must only be involved in a fast step | (1) |


| Question <br> Number | $\quad$ Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{8}$ | The only correct answer is C $\quad\left(1.0 \times 10^{-3}\right)$ | (1) |
|  | $\boldsymbol{A}$ is not correct because the initial rate and the rate constant have been mixed up |  |
| $\boldsymbol{B}$ is not correct because [A] has not been squared |  |  |
| $\boldsymbol{D}$ is not correct because [B] has been included |  |  |$\quad$|  |
| :--- |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 9(a) | The only correct answer is $\mathbf{B}$ <br> $\boldsymbol{A}$ is not correct because $p K_{a}$ has not been converted to $K_{a}$ <br> $\boldsymbol{C}$ is not correct because this is the pH of $0.100 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ ethanoic acid <br> D is not correct because the square root of $\mathrm{Ka}_{a} \times\left[\mathrm{CH}_{2} \mathrm{ClCOOH}\right]$ has not been used to calculate $\left[\mathrm{H}^{+}\right]$ | (1) |


| Question <br> Number | $\quad$ Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{9 ( b )}$ | The only correct answer is C (Acid: $\mathrm{CH}_{2} \mathrm{ClCOOH}$, Conjugate base: $\mathrm{CH}_{2} \mathrm{ClCOO}^{-}$) | (1) |
|  | $\boldsymbol{A}$ is not correct because ethanoic acid has a higher pKa than chloroethanoic acid so acts as a base in this <br> reaction <br> $\boldsymbol{B}$ is not correct because ethanoic acid has a higher $p K_{a}$ than chloroethanoic acid so acts as a base in this <br> reaction <br> $\boldsymbol{D}$ is not correct because chloroethanoic acid loses a proton when it acts as an acid |  |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 10(a) | The only correct answer is B (region $\mathbf{U}$ ) <br> $\boldsymbol{A}$ is not correct because in region $\boldsymbol{T}$ there is only aqueous ammonia at the start of the titration <br> $\boldsymbol{C}$ is not correct because in region $\boldsymbol{V}$, the vertical part of the graph, represents the end-point of the titration $\boldsymbol{D}$ is not correct because in region $\boldsymbol{W}$ all the aqueous ammonia has been neutralised | (1) |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 10(b) | The only correct answer is $A$ (methyl red) <br> $\boldsymbol{B}$ is not correct because phenol red has a pH range of 6.8 to 8.4 and 8.4 is not in the vertical region C is not correct because phenolphthalein has a pH range of 8.2 to 10.0 and this is not in the vertical region D is not correct because thymol blue has a pH range of 1.2 to 2.8 and this is not in the vertical region | (1) |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{1 0 ( c )}$ | The only correct answer is B (5.8) | (1) |
|  | A is not correct because this is the approximate $p H$ when excess hydrochloric acid has been added <br> C is not correct because this is the approximate $p H$ <br> aqueous ammonia the start of the end point when there is still excess <br> $\boldsymbol{D}$ is not correct because this is the approximate pH of aqueous ammonia |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{1 1}$ | The only correct answer is B $\quad\left(9.77 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\right)$ | (1) |
|  | A is not correct because the two volumes have been reversed <br> C is not correct because a mole ratio of 1:1 has been used instead of 1 mol of acid $: 2 \mathrm{~mol} \mathrm{NaOH}$ <br> $\boldsymbol{D}$ is not correct because a mole ratio of 2 mol of acid $: 1 \mathrm{~mol} \mathrm{NaOH}$ has been used |  |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 12 | The only correct answer is $\mathbf{C}$ <br> $\boldsymbol{A}$ is not correct because primary bromoalkanes react by an $S_{N} 2$ mechanism and the product would be optically active <br> B is not correct because secondary bromoalkanes react by an $S_{N} 1$ or an $S_{N} 2$ mechanism and the product could be optically active <br> D is not correct because primary and secondary bromoalkanes react by $S_{N} 1$ and $S_{N} 2$ mechanisms and the products could be optically active | (1) |
| Question Number | Answer | Mark |
| 13 | The only correct answer is D <br> $\boldsymbol{A}$ is not correct because this is an aldehyde and it would give a silver mirror with Tollens' reagent $\boldsymbol{B}$ is not correct because this is an aldehyde and it would give a silver mirror with Tollens' reagent $\boldsymbol{C}$ is not correct because this is an aldehyde and it would give a silver mirror with Tollens' reagent | (1) |
| Question Number | Answer | Mark |
| 14 | The only correct answer is $\mathbf{C}$ <br> $\left(\mathrm{CH}_{3} \mathrm{COONa}\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ <br> $\boldsymbol{A}$ is not correct because ethanoic acid reacts with NaOH to form the sodium salt <br> $\boldsymbol{B}$ is not correct because ethanoic acid reacts with NaOH to form the sodium salt and propan-1-ol does not react with NaOH <br> D is not correct because propan-1-ol does not react with NaOH | (1) |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{1 5}$ | The only correct answer is C $\quad(90.5 \%)$ | $\mathbf{( 1 )}$ |
| A is not correct because the molar masses have been used for the incorrect substances and the amount of <br> ethanoic acid should be the numerator of the fraction <br> $\boldsymbol{B}$ is not correct because the masses have not been converted into moles and the amount of ethanoic acid should <br> be the numerator of the fraction <br> $\boldsymbol{D}$ is not correct because the masses have not been converted into moles |  |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{1 6}$ | The only correct answer is D (weak attraction to stationary phase, strong attraction to mobile phase) | (1) |
| $\boldsymbol{A}$ is not correct because if there was a strong attraction to the stationary phase the component would not move <br> very far and would have a low Rf value <br> $\boldsymbol{B}$ is not correct because if there was a weak attraction to the mobile phase the component would not move very <br> far and would have a low Rf value <br> C is not correct because if there was a weak attraction to the mobile phase the component would not move very <br> far and would have a low Rf value |  |  |

## Section B

| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 7 ( a ) ( i )}$ | An answer that makes reference to the following point: <br> - it / lactic acid is non-superimposable on its mirror image | Allow there are four different atoms / groups <br> attached to a carbon (atom) <br> Allow it is chiral / has a chiral centre $/$ has a chiral <br> carbon (atom) $/$ has an asymmetric carbon (atom) <br> Ignore rotates the plane of plane-polarised light | (1) |
|  |  | Do not award four different molecules attached to a <br> carbon (atom) |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| 17(a)(ii) | An answer that makes reference to the following point: <br> - it is a racemic mixture <br> or <br> contains equal amounts of the two enantiomers / <br> (optical) isomers | Allow rotations caused by both enantiomers / <br> isomers cancel | (1) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :---: | :---: | :---: |
| $\mathbf{1 7 ( a ) ( \text { (iii) }}$ | $\bullet \mathrm{CH}_{2}=\mathrm{CHCOOH}$ | Allow any combination of structural or displayed <br> formulae or skeletal formulae $/ \mathrm{COOHCH}=\mathrm{CH}_{2}$ | (1) |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 17(b) | - X: butan-1-ol <br> or <br> or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OH}$ <br> - Y: phosphorus(V) chloride / phosphorus pentachloride / $\mathrm{PCl}_{5}$ <br> - Z: N -methylbutanamide <br> or <br> or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONHCH}_{3} / \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CONHCH}_{3}$ | Mark independently <br> If names and formulae are given, both must be correct but penalise missing H from carbon chain displayed formulae once only <br> Allow any combination of skeletal, structural or displayed formulae <br> Ignore molecular formulae for $\mathbf{X}, \mathbf{Y}$ and $\mathbf{Z}$ <br> Ignore butanol / $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ <br> Do not award $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{O}$ <br> Do not award butanal <br> Allow phosphorus(III) chloride $/ \mathrm{PCl}_{3} /$ thionyl chloride / $\mathrm{SOCl}_{2}$ <br> Do not award hydrochloric acid / HCl <br> Ignore methylbutanamide / butanamide in addition to a correct structure <br> Allow NH in skeletal formula <br> Do not award $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COHNCH}_{3}$ / <br> $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3} \mathrm{NH}$ | (3) |

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Answer \& \& Additional Guidance \& Mark \\
\hline 17(c) \& \begin{tabular}{l}
- Monomer 1 \\
- Monomer 2 \\
or
\end{tabular} \& (1)

(1) \& | Allow monomers in either order |
| :--- |
| Allow any combination of structural or displayed formulae / skeletal formulae |
| Allow OH |
| Ignore bond lengths and bond angles |
| Penalise OH-C on left of molecules once only Penalise missing H from carbon chain displayed formulae once only |
| Accept cis isomers | \& (2) <br>

\hline
\end{tabular}

| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 7 ( d ) ( i )}$ | $\bullet \mathrm{C}_{5} \mathrm{H}_{10 \mathrm{O}}^{2}$ |  |  |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 17(d)(ii) | - $\mathbf{E}$ is not a carboxylic acid or does not contain COOH (group) | If name and formula are given, both must be correct <br> Allow $\mathbf{E}$ is not an acid <br> Do not award additional functional groups | (1) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 7 ( d ) ( i i i )}$ | $\bullet$ E is an ester | Ignore saturated $/$-COO- / C=O | (1) |
|  |  | Do not award additional functional groups |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 17 (d)(iv) | - structure of $\mathbf{E}$ <br> - 2 or 3 proton environments correct <br> - $4^{\text {th }}$ proton environment correct | Example of structure: <br> Protons can be circled and labelled or just labelled Allow labels using data from the table <br> Only 1 proton from each group needs to be labelled <br> Allow whole groups to be labelled, including the carbon atom | (3) |

(Total for Question $17=14$ marks)

| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :---: | :--- | :---: |
| $\mathbf{1 8 ( a ) ( i )}$ | $\bullet$ no effect / none / nothing / no change | Ignore references to rate | (1) |


| Question Number | Answer |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 18(a)(ii) | An explanation that makes reference to the following points: <br> - (equilibrium) yield (of sulfur trioxide / $\mathrm{SO}_{3} /$ product) decreases <br> - the equilibrium constant / $K_{\mathrm{p}} / K_{c} / K$ decreases (as temperature increases) <br> and because the (forward / right) reaction is exothermic / releases heat (energy) / $\Delta H$ is negative | (1) <br> (1) | Allow less sulfur trioxide / $\mathrm{SO}_{3}$ / product forms Ignore equilibrium position shifts to the left Ignore more reactants formed <br> Allow the equilibrium constant / $K_{\mathrm{p}} / K_{c} / K$ decreases (as temperature increases) and because the reverse / backward / left reaction is endothermic / absorbs heat (energy) <br> Allow $K$ decreases because $\Delta S_{\text {surroundings }} / \Delta S_{\text {total }}$ decreases / becomes less positive (as temperature increases and assuming $\Delta S_{\text {system }}$ is constant ) <br> Ignore reference to rate | (2) |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 18(a)(iii) | - expression for $K_{\mathrm{p}}$ | Example of expression for $K_{\mathrm{p}}$ : $K_{\mathrm{p}}=\frac{p\left(\mathrm{SO}_{3}(\mathrm{~g})\right)^{2}}{p\left(\mathrm{SO}_{2}(\mathrm{~g})\right)^{2}(\mathrm{x}) p\left(\mathrm{O}_{2}(\mathrm{~g})\right)}$ <br> Allow $P / P P / p p$ etc for partial pressure and this can be inside the brackets <br> Allow e.g. $p^{2} \mathrm{SO}_{3}$ <br> Ignore missing (g) / brackets around formulae <br> Do not award square brackets | (1) |


| Question Number | Answer | Additional Guidance |  |  |  | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18(a)(iv) | - calculation of eqm moles <br> - calculation or expressions for 3 partial pressures <br> - substitution of values into $K_{\mathrm{p}}$ <br> expression <br> - calculation of $K_{\mathrm{p}}$ <br> and <br> answer to $2 / 3$ SF <br> and <br> units | Example of calculation: |  |  |  | (4) |
|  |  |  | $\mathrm{SO}_{2}$ | $\mathrm{O}_{2}$ | $\mathrm{SO}_{3}$ |  |
|  |  | Initial mol | 2.00 | 1.00 | - |  |
|  |  | Eqm mol | $\begin{gather*} 2.00-1.60  \tag{1}\\ =0.40 \\ \hline \end{gather*}$ | $\begin{gathered} 1.00-0.80 \\ =0.20 \end{gathered}$ | 1.60 |  |
|  |  | Total mol at eqm | $0.40+0.20+1.60=2.20$ |  |  |  |
|  |  | Partial pressure /atm | $\begin{align*} & \frac{0.40 \times 5.00}{2.20}  \tag{1}\\ & =0.90909 \end{align*}$ | $\begin{aligned} & \frac{0.20 \times 5.00}{2.20} \\ & =0.45455 \end{aligned}$ | $\begin{aligned} & \frac{1.60 \times 5.00}{2.20} \\ & =3.6364 \end{aligned}$ |  |
|  |  | TE for partial pressures on eqm moles $\begin{align*} K_{\mathrm{p}} & =\frac{3.6364^{2}}{0.90909^{2} \times 0.45455}  \tag{1}\\ & =35.2 / 35 \mathrm{~atm}^{-1} \end{align*}$ <br> TE on expression for $K_{\mathrm{p}}$ in (a)(iii) <br> Allow answer from previous correct rounding to 2 or more SF e.g. 0.91, 0.45 and 3.6 gives 34.8 <br> Penalise incorrect rounding once only e.g. 0.909 to 0.9 <br> Allow fractions in working but not in final answer <br> Allow atm $^{-}$for units but do not allow any other units Allow correct units written in (a)(iii) if not written here <br> Correct answer to 2 or 3 SF with units and no working scores (4) |  |  |  |  |
|  |  |  |  |  |  |  |



| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 8 ( b ) ( i i )}$ | • calculation of $\left[\mathrm{H}^{+}(\mathrm{aq})\right] /\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]$ | Example of calculation: <br> $\left[\mathrm{H}^{+}(\mathrm{aq})\right] /\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]=10^{-0.97}$ <br> $=0.10715 / 0.1072 / 0.107 / 0.11\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ | (1) |
|  |  | Ignore SF except 1 SF <br> Ignore incorrect units |  |
|  |  | Correct answer with no working scores (1) <br> Do not award $0.1 / 0.10 / 0.214$ |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| 18(b)(iii) | An explanation that makes reference to the following <br> points: | First equilibrium <br> the first ionisation of sulfuric acid is complete <br> or <br> the equilibrium position of the first equation lies <br> very far to the right | Allow $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ for $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]$ <br> Ignore missing state symbols |
| Second equilibrium <br> so $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]$ (from the second equilibrium) is very <br> small | Allow high $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]$ from first equilibrium <br> Allow acid fully dissociates in first <br> equilibrium <br> Ignore just acid fully dissociates |  |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 18(c)(i) | - $\mathrm{HSO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$ <br> - $\mathrm{SO}_{4}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{HSO}_{4}^{-}$ <br> or $\begin{equation*} \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ | Allow equations in either order <br> Allow $\rightleftharpoons$ provided equations written in directions shown <br> Ignore state symbols even if incorrect <br> Penalise non-ionic equations once only e.g. using HCl and NaOH <br> Allow $\mathrm{HSO}_{4}{ }^{-} \rightarrow \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}^{+}$ <br> and $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ <br> for M1 | (2) |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 18(c)(ii) | - calculation of the concentration of $\mathrm{SO}_{4}{ }^{2-}$ ions <br> - calculation of the concentration of $\mathrm{HSO}_{4}^{-}$ions <br> - expression for $K_{\text {a }}$ <br> - re-arrangement of expression <br> and calculation of $\left[\mathrm{H}^{+}\right]$ <br> - calculation of pH | Example of calculation: $\begin{align*} {\left[\mathrm{SO}_{4}{ }^{2^{-}}\right] } & =\frac{25.0 \times 0.150}{1000} \times \frac{1000}{100}  \tag{1}\\ & =0.0375\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{align*}$ <br> Allow mol SO $4^{2-}=0.00375 / 3.75 \times 10^{-3}(\mathrm{~mol})$ $\begin{aligned} {\left[\mathrm{HSO}_{4}^{-}\right] } & =\frac{75.0 \times 0.100}{1000} \times \frac{1000}{100} \\ & =0.075\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$ <br> Allow mol HSO4 ${ }^{-}=0.0075 / 7.5 \times 10^{-3}(\mathrm{~mol})$ <br> Do not award this mark if subtraction then done $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right] /}{\left[\mathrm{HSO}_{4}^{-}\right]} 0.012=\frac{\left[\mathrm{H}^{+}\right] \times 0.0375}{0.075}$ <br> Allow mol substituted into correct expression $\begin{align*} {\left[\mathrm{H}^{+}\right] } & =\frac{\mathrm{Ka}_{\mathrm{a}}\left[\mathrm{HSO}_{4}^{-}\right]}{\left[\mathrm{SO}_{4}^{2-}\right]}=\frac{0.012 \times 0.075}{0.0375} \\ & =0.024\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ <br> TE on expression, $\left[\mathrm{SO}_{4}{ }^{2-}\right]$ and $\left[\mathrm{HSO}_{4}^{-}\right]$or mol $\begin{aligned} \mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right]=-\log 0.024 \\ & =1.6198 / 1.620 / 1.62 / 1.6 \end{aligned}$ <br> TE on $\left[\mathrm{H}^{+}\right]$ <br> Ignore SF except 1 SF <br> Correct answer without working scores (5) <br> Allow alternative methods | (5) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 9 ( a )}$ | • $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ | Allow symbols in any order i.e. <br> $\mathrm{C}_{10} \mathrm{OH} 18 / \mathrm{H}_{18} \mathrm{C}_{10} \mathrm{O} / \mathrm{H}_{18} \mathrm{OC} 10 / \mathrm{OC}_{10} \mathrm{H}_{18} / \mathrm{OH}_{18} \mathrm{C}_{10}$ |  |
|  |  | Allow large numbers e.g. C 10 H 18 O | (1) |
|  |  | Do not award superscripts e.g. $\mathrm{C}^{10} \mathrm{H}^{18} \mathrm{O}$ |  |


| Question Number | Answer |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 19(b) | An answer that makes reference to the following points: <br> - curly arrow from lone pair on C of $\mathrm{CN}^{-}$ towards C of aldehyde group <br> - curly arrow from $\mathrm{C}=\mathrm{O}$ to, or just beyond, O and dipole on $\mathrm{C}=\mathrm{O}$ <br> - intermediate <br> - curly arrow from lone pair on $\mathrm{O}^{-}$to H and curly arrow from H-CN bond to anywhere on CN and final organic product | (1) <br> (1) <br> (1) <br> (1) | Penalise an incorrect dipole in M1 and M4 once only <br> Penalise curly arrow not starting from lone pair once only in M1 and M4 <br> Penalise half arrow-heads once only <br> Allow $\mathrm{CN}^{-}$to attack $\mathrm{C}=\mathrm{O}$ from any angle <br> Allow CN bond displayed <br> If M1 lost as curly arrow from N of $\mathrm{CN}^{-}$, allow CN joined to carbon through N <br> Ignore connectivity for vertical CN groups <br> Allow curly arrow from lone pair on $\mathrm{O}^{-}$to $\mathrm{H}^{+}$ Ignore missing dipole in HCN | (4) |
| Example of | echanism: |  |  |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 9 ( \mathbf { c } ) ( \mathbf { i } )}$ | $\bullet \mathrm{CH}_{3} \mathrm{CO}-/-\mathrm{COCH}_{3} /$ methyl ketone | Allow any combination of structural / displayed <br> formula or skeletal formula <br> Allow methyl next to ketone / methyl and ketone / <br> methylcarbonyl <br> Allow $\mathrm{CH}_{3} \mathrm{COR} / \mathrm{RCOCH}_{3}$ | (1) |
|  |  | Ignore missing continuation bond from structures <br> Do not award ethanal / methyl secondary alcohol / <br> a specific compound |  |


| Question Number | Answer |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 19(c)(ii) | - any 2 skeletal formulae <br> - remaining 2 skeletal formulae | (1) <br> (1) | Examples of skeletal formulae: | (2) |
|  |  |  |  |  |
|  |  |  |   |  |
|  |  |  | Ignore bond lengths and bond angles <br> Allow (1) for 4 correct displayed / structural formulae |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 19(c)(iii) | - displayed formula of $\mathbf{F}$ <br> - carbon atoms labelled | Example of displayed formula: <br> Allow CH3 <br> Allow other unambiguous labels for the carbon atoms <br> Allow M2 for labels on structural / skeletal formulae, including labels on formulae in (c)(ii) <br> Ignore reference to singlet / splitting patterns | (2) |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 19(d)* | This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. <br> Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. <br> The following table shows how the marks should be awarded for indicative content. <br> The following table shows how the marks should be awarded for structure and lines of reasoning. | Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). | (6) |



Indicative content

- IP1 London forces

Pentane (only) has London forces / all have London forces

- IP2 Butanal

Butanal (also) has (permanent) dipole-dipole interactions

- IP3 Propanoic acid

Propanoic acid (also) has (dipole-dipole and) hydrogen bonding

- IP4 Intermolecular forces

The London forces have about the same strength as they have a similar number of electrons / pentane has 42 , butanal has 40 (and propanoic acid has 40 electrons)
or
butanal has dipole-dipole interactions because it is polar / has a dipole on $\mathrm{C}=\mathrm{O}$
or
propanoic acid has hydrogen bonding because it contains OH / COOH group

- IP5 Butanal and pentane

Dipole-dipole interactions are stronger than London forces
or
more energy is needed to overcome the dipole-dipole interactions than London forces

## - IP6 Butanal and propanoic acid

Hydrogen bonding is stronger than dipole-dipole interactions or
more energy is needed to overcome hydrogen bonding than dipoledipole interactions

Allow dispersion forces / van der Waals' forces /

Allow similar relative molecular masses (butanal 72, pentane 72 , propanoic acid 74 )
Do not award incorrect numbers of electrons / relative molecular masses

Allow dipole-dipole interactions linked to $\mathrm{C}=\mathrm{O}$
Allow diagram of hydrogen bond between two molecules
Ignore formation of dimer
Allow London forces are the weakest (intermolecular force)
Do not award if covalent bonds broken or explanation is about intermolecular forces with water

Allow hydrogen bonding is the strongest (intermolecular force)
Do not award if covalent bonds broken or explanation is about intermolecular forces with water

| Question <br> Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 20(a) | - substitution of values into expression for $\Delta S_{\text {system }}$ <br> - calculation of $\Delta S_{\text {system }}$ <br> - substitution of values into expression for $\Delta S_{\text {surroundings }}$ <br> - calculation of $\Delta S_{\text {surroundings }}$ <br> - calculation of $\Delta S_{\text {total }}$ | Example of calculation: <br> $\Delta S_{\text {system }}=(2 \times 95.9)+(3 \times 205.0)-(2 \times 149.2)$ <br> Allow $191.8+615.0-298.4 / 806.8-298.4$ <br> $\Delta S_{\text {system }}=(+) 508.4\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ <br> $\Delta S_{\text {surroundings }}=-\frac{(-67.2)}{298}$ <br> $\Delta S_{\text {surroundings }}=(+) 0.2255\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ <br> or $(+) 225.5\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ <br> $\Delta S_{\text {total }}=508.4+225.5=(+) 733.9\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ <br> or $(+) 0.7339\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ <br> TE on calculated values for $\Delta S_{\text {system and }} \Delta S_{\text {surroundings }}$ <br> Do not award $\Delta S_{\text {system }}$ added to $\Delta S_{\text {surroundings }}$ in different units e.g. $508.4+0.2255=508.6255$ <br> Ignore SF except 1 SF <br> Units are not needed. <br> Units in any order e.g. $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ <br> Penalise incorrect / incomplete units in $\Delta S_{\text {total }}$ but allow: e.g. J/ mol/ K or J/mol.K <br> $\mathrm{mol}^{-}$and $\mathrm{K}^{-}$in otherwise correct units <br> Correct answer with no working scores (5) | (5) |



| Question <br> Number | Answer |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 20(b)(ii) | An explanation that makes reference to the following points: <br> - first order with respect to $\mathrm{BrO}_{3}{ }^{-}$ions and because in runs 1 and 2 as $\left[\mathrm{BrO}_{3}^{-}\right]$doubles (and $\left[\mathrm{H}^{+}\right]$is constant) the rate doubles <br> - in runs 1 and 3 , as $\left[\mathrm{BrO}_{3}^{-}\right]$triples rate should triple (to $1.08 \times 10^{-2}$ ) and $\left[\mathrm{H}^{+}\right]$also doubles and rate increases by a factor of 4 <br> - so reaction is second order with respect to $\mathrm{H}^{+}$ ions | (1) (1) (1) | In M1 and M2, the working may be shown in the table Allow implied runs e.g. as $\left[\mathrm{BrO}_{3}{ }^{-}\right]$doubles (and $\left[\mathrm{H}^{+}\right]$ is constant), the rate doubles <br> Allow correct alternative explanations using runs 2 and 3 and others e.g. <br> $\left[\mathrm{BrO}_{3}^{-}\right]$triples, $\left[\mathrm{H}^{+}\right]$doubles and rate x 12 <br> Do not award just $\left[\mathrm{H}^{+}\right]$doubles and rate x 4 with no mention of bromate ions <br> Stand alone mark | (3) |




| Question <br> Number | Answer |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 20(c) | - axes correct way around <br> and <br> suitable scale <br> - both axes labelled <br> and <br> units for x axis <br> - all points plotted correctly and best-fit straight line <br> - calculation of gradient <br> - sign and units of gradient <br> - calculation of activation energy <br> - sign and corresponding units of activation energy | (1) (1) (1) (1) (1) (1) (1) | Points / line must cover at least half the grid in both directions $\ln k$ values must become more negative down the axis with negative signs shown <br> Allow horizontal axis shown at bottom of graph <br> y axis: $\ln \mathrm{k}$ with no units on y axis and <br> x axis: 0.0033 etc with $(1 / \mathrm{T}) / \mathrm{K}^{-1}$ or 3.3 etc with $(1 / \mathrm{T}) / 10^{-3} \mathrm{~K}^{-1}$ or $3.3 \times 10^{-3}$ etc with $(1 / \mathrm{T}) / \mathrm{K}^{-1}$ or 3.3 etc with $(1 / \mathrm{T}) \times 10^{3} / \mathrm{K}^{-1}$ Brackets are not needed around $1 / \mathrm{T}$ <br> Allow $\pm 1 / 2$ square <br> Allow line covering points provided it is straight <br> Ignore extrapolation in either direction <br> This may be shown on the graph <br> Allow gradient in the range ( - )12800 to (-)13800 <br> Allow gradient calculated from data in the table <br> If gradient not evaluated, allow correct working <br> Negative sign and units K <br> Allow $1 / \mathrm{K}^{-1}$ for units <br> Allow -12.8 to -13.8 kK for M4 and M5 <br> $E_{\mathrm{a}}=13167 \times 8.31 / 1000=109.418$ <br> Expected range 106 to 115 <br> or $13167 \times 8.31=109418$ <br> TE on gradient <br> $+109.418 \mathrm{~kJ} \mathrm{~mol}^{-1}$ or $+109418 \mathrm{~J} \mathrm{~mol}^{-1}$ <br> Allow $\mathrm{kJ} \mathrm{mol}^{-}$or $\mathrm{J} \mathrm{mol}^{-}$ <br> Ignore missing + but do not award - sign <br> Penalise 1 SF for gradient and $E_{\mathrm{a}}$ value once only |  |

