Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code WCH14_01_2001_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

https://t.me/joinchat/wwc3WbVZ6MtkYWU0

Section A (multiple choice)

Question Number	Answer	Mark
$\mathbf{1 (a)}$	The only correct answer is A (compound 1)	$\mathbf{1}$
		Bis incorrect as aldehydes do not change the pH of water C is incorrect as ketones do not change the $p H$ of water D is incorrect as amides do not change the $p H$ of water

Question Number	Answer	Mark
1(b)	The only correct answer is A (compound 1)	$\mathbf{1}$
		B is incorrect as aldehydes do not react with amines to form an N-substituted amide C is incorrect as ketones do not react with amines D is incorrect as amides do not react with amines

https://t.me/joinchat/wwc3WbVZ6MtkYWU0

Question Number	Answer	Mark
1 (c)	The only correct answer is C (compound 3) A is incorrect as it does not form iodoform B is incorrect as it does not form iodoform D is incorrect as it does not form iodoform	1
Question Number	Answer	Mark
2	The only correct answer is $\mathbf{C}\left(\mathrm{ClCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)(\mathrm{Cl}) \mathrm{COOH}\right)$ A is incorrect as compound 1 does not have a chiral carbon atom B is incorrect as compound 2 does not have a chiral carbon atom D is incorrect as compound 4 does not have a chiral carbon atom	1
Question Number	Answer	Mark
3	The only correct answer is \mathbf{B} (condensation) A is incorrect as neither monomer has a carbon-carbon double bond C is incorrect as this is not a type ofpolymerisation D is incorrect as this is not a type of polymerisation	1

https://t.me/joinchat/wwc3WbVZ6MtkYWU0

Question Number	Answer	Mark
$\mathbf{4}$	The only correct answer is $\mathbf{A}(\mathrm{NaOOCCH}=\mathrm{CHCOONa})$	$\mathbf{1}$
	B is incorrect as only one of the -COOH groups has reacted C is incorrect as OH groups have added across the double bond D is incorrect as only one of the -COOH groups has reacted, and a -COOH group has been reduced	

| Question
 Number | Answer | Mark | |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{5}$ | The only correct answer is C | | |

Question Number	Answer	Mark
$\mathbf{6}$	The only correct answer is D (phosphorus(V) chloride)	$\mathbf{1}$
A is incorrect as chlorine will not react with ethanoic acid to form ethanoyl chloride B is incorrect as chloroethane will not react with ethanoic acid to form ethanoyl chloride C is incorrect as hydrogen chloride will not react with ethanoic acid to form ethanoyl chloride		

https://t.me/joinchat/wwc3WbVZ6MtkYWU0

Question Number	Answer	Mark
$\mathbf{7}$	The only correct answer is $\mathbf{B}(\mathrm{Hg}(\mathrm{l}) \rightarrow \mathrm{Hg}(\mathrm{g}) \mathbf{)}$	$\mathbf{1}$
	A is incorrect as the increase in disorder from (s) to (l) is less than that from (l) to (g) C is incorrect as there is a decrease in disorder as the gaseous ion is hydrated D is incorrect as there is no significant change in number of particles or state.	

Question Number	Answer	Mark
$\mathbf{8}$	The only correct answer is $\mathbf{D}(W, X, Y$ and Z but there is more Y and Z than W and $X)$	$\mathbf{1}$
	A is incorrect as this requires in a very large value for K_{c} B is incorrect as this will result in a very small value for $K_{c}<1$ C is incorrect as this will result in a small value for $K_{c}<1$	

Question Number	Answer	Mark
9	The only correct answer is \mathbf{A} (sum of enthalpies of hydration of the gaseous ions) B is incorrect as it would be $\mathrm{Li}(\mathrm{s})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{LiCl}(\mathrm{s})$ C is incorrect as it would be $\mathrm{LiCl}(\mathrm{s}) \rightarrow \mathrm{Li}^{+}(a q)+\mathrm{Cl}^{-}(a q) D$ is incorrect as it would be $\mathrm{Li}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{LiCl}(\mathrm{s})$	1

https://t.me/joinchat/wwc3WbVZ6MtkYWU0

Question Number	Answer	Mark
$\mathbf{1 0}$	The only correct answer is \mathbf{D} (require $20 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ to react completely) A is incorrect as one acid is strong, the other is weak B is incorrect as the solutions have different concentrations and ethanoic acid is a weak acid C is incorrect as the solutions have different concentrations and ethanoic acid is a weak acid	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 1}$	The only correct answer is $\mathbf{B}(H C O O H(a q)$ and $K O H(a q))$ A is incorrect as both the acid and base are strong Cis incorrect as the acid is strong and the base is weak D is incorrect as both the acid and base areweak	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 2}$	The only correct answer is C (between 11 and 13)	$\mathbf{1}$
	A is incorrect the solution is a strong base whose concentration is $>1 \times 10^{-5} \mathrm{~mol} \mathrm{dm}$ the solution is a strong base whose concentration is $>1 \times 10^{-3} \mathrm{~mol} \mathrm{dm} \mathrm{mm}^{-3} \mathrm{D}$ is incorrect the solution is a strong base whose concentration is $<1 \times 10^{-1} \mathrm{~mol} \mathrm{dm}$	

https://t.me/joinchat/wwc3WbVZ6MtkYWU0

Question Number	Answer	Mark
$\mathbf{1 3 (a)}$	The only correct answer is C (flasks 1 and 4 only) A is incorrect as flask 4 also contains only substances from the right-hand side of the equilibrium (HCI(aq) includes some water) B is incorrect as flask 1 also contains only substances from the right-hand side of the equilibrium D is incorrect as flasks 2 and 3 do not contain anyester	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 3 (b)}$	The only correct answer is A (the equilibrium reaction is slow)	$\mathbf{1}$
	B is incorrect as rapid hydrolysis would affect the position of the equilibrium C is incorrect as the acid is neutralised D is incorrect as although a buffer may form it does not affect the position of the ester equilibrium	

Question Number	Answer	Mark
14	The only correct answer is C A is incorrect as it shows a 0 order reaction B is incorrect as it shows a 0 order reaction D is incorrect as the concentration of Q remains constant	1

https://t.me/joinchat/wwc3WbVZ6MtkYWU0

Question Number	Answer	Mark
$\mathbf{1 5 (a)}$	The only correct answer is D (when the concentration of nitrogen monoxide doubles and the concentration of oxygen quadruples, the rate increases by a factor of 8)	$\mathbf{1}$
	A is not an incorrect statement as the overall order is 3 B is not an incorrect statement as the rate can be measured in units of mol $\mathrm{dm}^{-3} \mathrm{~s}^{-1}$ Cis not an incorrect statement as increasing the pressure does increase the rate of the reaction	

Question Number	Answer	Mark
$\mathbf{1 5 (b)}$	The only correct answer is $\mathbf{D}\left(\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}\right)$ A is incorrect as these are the units for a fourth overall order rate equation B is incorrect as the exponent values are incorrect C is incorrect as the signs on the exponent values for mol and dm are incorrect.	$\mathbf{1}$

Question Number	Answer	Mark
$\mathbf{1 5 (c)}$	The only correct answer is $\mathbf{A}\left(1.31 \times 10^{-2}\right)$	$\mathbf{1}$
	B is incorrect as it is the value for $[\mathrm{NO}]^{2}$ Cis incorrect as the values for $\left[\mathrm{O}_{2}\right]$ and rate are the wrong way round in the calculation, and the square root of the calculated value has not been determined D is incorrect as the values for $\left[\mathrm{O}_{2}\right]$ and rate are the wrong way round in the calculation	

https://t.me/joinchat/wwc3WbVZ6MtkYWU0

Section B

Question Number	Answer	Additional Guidance	Mark
16(a)(i)	 All 4 peaks correctly matched scores both marks 2 or 3 peaks correctly matched scores 1 mark 0 or 1 peak correctly matched scores 0 marks	NOTE Allow labels to/near to carbon of correct group	2

Question Number	Answer	Additional Guidance	Mark			
$\mathbf{1 6 (a) (\text { ii) }}$	4.2 ppm quartet due to 3 hydrogen (atoms) on adjacent carbon 1.3 ppm triplet due to 2 hydrogen (atoms) on adjacent carbon	(1)	Allow 'due to adjacent $\mathrm{CH}_{3}{ }^{\prime}$	Allow 'due to adjacent $\mathrm{CH}_{2}{ }^{\prime}$	\quad	(1)
:---						

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 6 (a) (i i i)}$	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COCOOH}$	Allow skeletal or displayed formulae If more than 1 structure type given, both must be correct.	

Question Number	Answer	Additional Guidance	Mark
16(b)(i)	Origin/start line shown above bottom of paper Straight line for solvent front added and labelled Spot due to ethyl-3-oxobutanoate in position consistent with R_{f} between 0.4 and 0.5	Ignore omission of initial spot, but if shown must be on baseline Allow 'distance travelled by solvent' Do not award wavy lines Do not award the top of the paper as the solvent front	3

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 6 (b) (i i)}$ | M1 As only London forces form between them (so spot
 moves a shorter distance) / ethyl-3-oxobutanoate is
 polar, hexane isnon-polar / | Allow reverse arguments Do
 not award M1 if reference to
 hydrogen bonds |
| M2 Weaker interaction between hexane and ethyl-3-
 oxobutanoate / ethyl-3-oxobutanoate is less soluble in
 hexane | (1) Allow solvent/mobile phase
 for hexane
 Allow ethyl-3-oxobutanoate
 does not dissolve in hexane | |

(Total for Question 16 = 10 marks)

Question Number	Acceptable Answers		Additional Guidance	Mark
18(a) (i)	- Calculation of $1 / T$ value 1.19×10^{-3} and - Calculation Inkvalue -6.40		Both values must be given to 3sf.	1

Question Number	Acceptable Answers	Additional Guidance	Mark
18(a)(ii)	M1 Axes correct way roundand labelled M2 Suitable scale with points covering at least half the axes inboth directions M3 All points plotted ($\pm 1 / 2$ square), and straight line of best fit	If numbers used on x-axis are without the power of ten allow $\times 10^{3}$ or 10^{-3} on the axis. Do not award M1 if units given for $\ln \mathrm{k}$ on y-axis Do not award small " t " for " T " Ignore y-axis with increasing negative values going upwards. COMMENT: If wrong columns plotted allow M2 only	3

Question Number	Acceptable Answers		Additional Guidance	Mark
18(a)(iii)	M1 Calculation of gradient with sign, in the range -34200 to -31200 M2 Units of gradient is K M3 Calculation of activation energy	(1) (1) (1)	Do not award positive gradient. Allow gradient as a fraction Example of calculation: $(32700 \times 8.31) / 1000=(+) 272(k J$ mol^{-1}) Allow any answer between (+)259 and 284 Allow answer in $\mathrm{J} \mathrm{mol}^{-1}$ if units given Allow TE from M1 if Ea is positive. Ignore SF other than 1SF Do not award negative Ea	3

Question Number	Acceptable Answers		Additional Guidance	Mark
18(b)	The value is large, Either as a lot of energyis required so the reactant is kinetically stable / rate of reaction is low (1) Or as a lot of energyis required to break the strong C-C bonds in cyclopropane Or as a lot of energy is required to break the strong C-C bonds in cyclopropane so the reaction requires very high temperatures	(1) (1) (1) (1) (1)	Comment - alternative approach Allow TE from (a)(iii) for a small positive value (less than 50); the value issmall so not much energy is required the bonds incyclopropane are strained/ C-C-C bond angle is 60 rather than 109.5。 Ignore any references to catalysts	2

| Question
 Number | Acceptable Answers | Additional Guidance |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 8 (c)}$ | As T increases kincreases (rapidly) | |
| As the (average) energy of molecules / particles increases(1) | | |
| So a greater proportion of / more collisions have
 energy \geq activationenergy / | Ignore any reference to
 equilibrium constant | |

Question Number	Acceptable Answers	Additional Guidance	Mark
19(a)(ii)	An answer that makes reference to: - A higher temperature would result in a less positive / lower $\Delta S_{\text {surroundings }}\left(\Delta S_{\text {system }}\right.$ is relatively unaffected by temperature) - So $\Delta S_{\text {total }}$ is less positive / lower, which makes reaction less feasible /reduces yield COMMENT: For M1 and M2 allow correct calculation of $\Delta S_{\text {total }}$ (at 973 K) >0 to show that the reaction is feasible. - but high temperature is used to increase rate	Ignore references to Le Chatelier for M1 and M2. Allow A highertemperature would result in a an insignificant change in $\Delta S_{\text {surroundings }}$ as its value is so large ($\Delta S_{\text {system }}$ is relatively unaffected by temperature) So $\Delta S_{\text {total }}$ is unchanged (in sign), which meansfeasibility of reaction is unchanged Ignore less easily / readily Standalone mark	3

Question Number	Acceptable Answers	Additional Guidance	
19(a)(iii)	Recall of expression for K Rearrangement of expression and	(1)	Example of calculation: $\Delta S_{\text {total }}=R \ln K$
	calculation of In K and value for K Allow TE from (a)(i) but no TE if incorrect expression given in M1.	(1)	In $K=\Delta S_{\text {total }} / R=1780.7 / 8.31$

Question Number	Acceptable Answers	Additional Guidance	Mark
19(b)(i)	Arrows upwards for first and second ionisation energies for calcium and correct labels, B and Cin boxes Downward arrows for electron affinity and lattice enthalpy and correct labels E x 2 and Fin boxes Correct species including state symbols on horizontal lines	Only penalise lack of arrow once in M1 and M2. If electrons are included, they must be correct but allow e for e^{-}	3

Question Number	Acceptable Answers	Additional Guidance	Mark
19(b)(ii)	Correct expression Evaluation	Example of calculation: $\begin{align*} & {[(178.2+590+1145+(106.8 \times 2)-(295.4 \times 2)]-2074} \tag{1}\\ & =-538\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{align*}$ If $E \times 2$ penalised in $b(i)$, allow use of 1×295.4 as TE. In this case only $-242.6\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores 2 However, if $E \times 2$ not penalised in $b(i)$ then penalise failure to multiply by 2 once only in b(ii) $-349.4\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores 1 (misses both $\times 2$) $-242.6\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores 1 (misses 2×295.4) $-644.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores 1 (misses 2×106.8) $+538\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores 1 (expression wrong way round) ignore SF except 1 SF	2

Question Number	Acceptable Answers	Additional Guidance	Marks
19(b)(iii)	Bonding in calcium fluoride is (virtually) 100\% ionic Whereas bonding in calcium iodide has a degree of covalency / somecovalent character Then any $\mathbf{2}$ from these 3 marking points The calcium ion is polarising The fluoride (ion) is small so not easily polarised / electron cloud not soeasily distorted the iodide (ion) is larger and so is easily polarised / electron cloud iseasily distorted	Allow lodide / I- has some covalent character Penalise the use of fluorine and iodine once only	4

Question Number	Acceptable Answers	Additional Guidance	Mark
19(c)	M1 More exothermic / more negative / greater in magnitude (1) M2 As (the atomic radius of) chlorine is smaller / less shielding between nucleus and electron (to be gained) / chlorine has fewer shells (of electrons) M3 Stronger attraction (between nucleus and electron to be gained)	Ignore larger / less / higher Allow 'more energy released' Do not award chloride for chlorine Allow chlorine is more electronegative than iodine Allow reverse argumentfor M2 and M3	3

https://t.me/joinchat/wwc3WbVZ6MtkYWU0

Section C

Question Number	Acceptable Answers	Additional Guidance	Mark
20(a)(i)	3- methylbutyl ethanoate or 3-methyl-1-butyl ethanoate	Allow butanyl for butyl Do not award butanoyl Allow methly formethyl	$\mathbf{1}$

Question Number	Acceptable Answers		Additional Guidance	Mark
20(a)(ii)	- Calculation of M_{r} of ester - Calculation of mass of ester - Calculation of percentage of ester	(1) (1) (1)	Example of calculation M_{r} of ester $=130$ $\begin{aligned} \text { Mass of ester }= & 6.06 \times 10^{-3} \times 130 \\ = & 0.7878(\mathrm{~g}) \end{aligned}$ TE on incorrect M_{r} of ester $\% \text { of ester }=(0.7878 / 1.07) \times 100=73.6 \%$ Allow 73.8% as M 2 rounded to 0.79 Correct answer with no working scores 3 marks. Allow TE from M2 Ignore SF except 1SF	3

Question Number	Acceptable Answers		Additional Guidance	Mark
20(a)(iii)	- Calculation of mol of excess sodium hydroxide - Calculation of concentration of excess sodium hydroxide - Calculation of pH to at least 1 dp	(1) (1) (1)	Example of calculation Excess amount of sodium hydroxide = $(0.025 \times 0.980)-6.06 \times 10^{-3}=0.01844$ (mol) Concentration of excess sodium hydroxide = 0.01844/0.025 $=0.7376\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ allow TE from M1 if some attempt at subtraction $\mathrm{pH}=14-(-\log (0.7376))=13.8678=13.9$ allow TE from M 2 if pH is greater than7 and less than or equal to 14 Allow 1 mark for $\mathrm{pH}=13.99$ (based on $0.98 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$)	3

Question Number	Acceptable Answers	Additional Guidance	Mark
20(a)(iv)	- student C is correct as the titration is between a strong acid and a strong base (1) - Both methyl orange and phenolphthalein change colour at equivalence / vertical section of the graph	Allow A and B are incorrect Allow both $\mathrm{pK}_{\mathrm{IN}}$ values / range of indicators are within vertical section (of thegraph) If values are quoted they must be correct PP $=9.3 ; \mathrm{MO}=3.7$	2

Question Number	Acceptable Answers	Additional Guidance	
$\mathbf{2 0 (a) (v)}$	Add (excess) $\mathrm{HCl}(\mathrm{aq})$	(1)	Allow 'add a strong acid' Allow name or formula of any strong acid but if both are given, both must be correct

Question Number	Acceptable Answers	Additional Guidance	Mark
20(b)(i)	M1 Calculates moles of $\mathrm{CH}_{3} \mathrm{COONa} / \mathrm{NaOH}$ M2 Calculates moles ofexcess $\mathrm{CH}_{3} \mathrm{COOH}$ M3 Calculates / shows ratio of $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ to [$\mathrm{CH}_{3} \mathrm{COONa}$] OR ratio of moles $\mathrm{CH}_{3} \mathrm{COOH}$ to $\mathrm{CH}_{3} \mathrm{COONa}$ M4 re-arranges K_{a} or $\mathrm{p} K_{\mathrm{a}}$ expression correctly and substitutes appropriate values to find $\left[\mathrm{H}^{+}\right](1)$ M5 Calculation of pH	Example of calculation Moles of $\mathrm{NaOH}=$ moles of $\mathrm{CH}_{3} \mathrm{COONa}=$ $(30 / 1000) \times 0.142=4.26 \times 10^{-3}(\mathrm{~mol})$ Moles of excess $\mathrm{CH}_{3} \mathrm{COOH}=[(50 / 1000) \times$ $0.15]-4.26 \times 10^{-3}=3.24 \times 10^{-3}(\mathrm{~mol})$ $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=3.24 \times 10^{-3} /(80 / 1000)=$ $0.0405\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\left[\mathrm{CH}_{3} \mathrm{COONa}\right]=4.26 \times 10^{-3} /(80 / 1000)=$ $0.05325\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $00.0405 / 05325$ Allow ratio using moles as V cancels NOTE can be subsumed in M4 $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=1.70 \times 10^{-5} \times(0.0405 / 0.05325)=} \\ & 1.29 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \mathrm{Or} \\ & \mathrm{pH}=\mathrm{pKa}-\log ([\text { acid }] /[\text { base }]) / \\ & \mathrm{pH}=4.77-\log (0.0405 / 0.05325) \\ & \mathrm{pH}=4.89 \end{aligned}$ Correct answer with no working scores 5 marks Ignore SF except 1SF Allow TE throughout Comment 4.52 will score 4 (omission of subtraction)	5

Question Number	Acceptable Answers	Additional Guidance	Mark
20(b) (ii)	M1 (Large) 'reservoir' of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$ M2 The OH^{-}ions react with $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{H}^{+}$ions $\mathrm{M} 3 \mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ or $\begin{equation*} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ $\mathbf{M 4}$ The H^{+}ions react with $\mathrm{CH}_{3} \mathrm{COO}^{-}$or $\begin{equation*} \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH} \tag{1} \end{equation*}$ M5 The ratio of acid to base remains (almost) constant (1)	If both equations given both must be correct If equation given must be correct Allow base/salt remains (almost) constant Allow [H^{+}] remains(almost) constant	5

(Total for Question 20 = 20 marks)
(Total for Section C = 20 marks)
Total for Paper = 90marks

