Mark Scheme (Results)

Summer 2018

Pearson Edexcel International Advanced Level in Chemistry (WCHO4) Paper 01 General Principles of Chemistry I-Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WCH04_01_MS_1806
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to: - write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Mark
$\mathbf{1}$	The only correct answer is B \boldsymbol{A} is not correct because this term does not relate to gas chromatography \boldsymbol{C} is not correct because this term is not used \boldsymbol{D} is not correct because this term is not used	(1)

Question Number	Answer	Mark
$\mathbf{2}$	The only correct answer is D	(1)
	\boldsymbol{A} is not correct because this would not work	
	\boldsymbol{B} is not correct because this would not work	
\boldsymbol{C} is not correct because this would not work		

Question Number	Answer	Mark
3(a)	The only correct answer is A	(1)
	B is not correct because UV does not heat chemicals C is not correct because radio waves only affect nuclei \boldsymbol{D} is not correct because UV does not heat chemicals and radio waves only affect nuclei	

Question Number	Answer	Mark
3(b)	The only correct answer is D	(1)
	A is not correct because IR only makes bonds vibrate/heats up /accelerates reaction B is not correct because microwaves only heat up /accelerates reaction \boldsymbol{C} is not correct because radio waves only affect nuclei	

Question Number	Answer	Mark
4(a)	The only correct answer is C \boldsymbol{A} is not correct because neither W nor X are methyl ketones ketone	D is not correct because Z is not the only molecule which is a methyl ketone

Question Number	Answer	Mark
4(b)	The only correct answer is B	(1)
	\boldsymbol{A} is not correct because there are two hydrogen atoms joined to one carbon of the $C=C$	
	\boldsymbol{C} is not correct because Y is not an alkene \boldsymbol{D} is not correct because X does have geometric isomers	

Question Number	Answer	Mark
4(c)	The only correct answer is C	(1)
	\boldsymbol{A} is not correct because X also gives a positive result	
	B is not correct because W also gives a positive result	
	D is not correct because neither Y nor Z gives a positive result	

Question Number	Answer	Mark
4(d)	The only correct answer is B	(1)
	A is not correct because neither molecule W nor X would reduce to pentan-2-ol \boldsymbol{C} is not correct because molecule Z would still have the $C=C$ \boldsymbol{D} is not corrrect because molecule Z would still have the $C=C$	

Question Number	Answer	Mark
4(e)	The only correct answer is D	(1)
	A is not correct because a straight-chain is produced \boldsymbol{B} is not correct because a straight-chain is produced \boldsymbol{C} is not correct because molecule Z would also form a branched molecule	

Question Number	Answer	Mark
4(f)	The only correct answer is D	(1)
	A is not correct because Y has a $\mathrm{CH}_{3} \mathrm{CH}_{2}$ likely to produce a fragment $\mathrm{B} / \mathrm{e}=29$ \boldsymbol{B} is not correct because W has a HCO likely to produce a fragment m/e $=29$ \boldsymbol{C} is not correct because Z would not be expected to produce a fragment $m / e=29$	

Question Number	Answer	Mark
$\mathbf{5 (a)}$	The only correct answer is A B is not correct because the concentrations should be squared and not doubled \boldsymbol{C} is not correct because the squared concentrations should be multiplied and not added \boldsymbol{D} is not correct because the concentrations should be squared and not doubled, and multiplied not added.	(1)

Question Number	Answer	Mark
$\mathbf{5 (b)}$	The only correct answer is D \boldsymbol{A} is not correct because dichromate(VI) is not reduced	(1)
	\boldsymbol{B} is not correct because NaOH does not decolorise the solution \boldsymbol{C} is not correct because the equilibrium position shifts to the right	

Question Number	Answer	Mark
$\mathbf{6}$	The only correct answer is A	(1)
	B is not correct because the units are inverted \boldsymbol{C} is not correct because the decimetres are to the power +3 \boldsymbol{D} is not correct because the solids are absent from K_{c}	

Question Number	Answer	Mark
$\mathbf{7 (a)}$	The only correct answer is A B is not correct because total pressure is multiplied by the mole fraction and not moles of chlorine	(1)
	\boldsymbol{C} is not correct because total pressure is multiplied and not divided by the mole fraction \boldsymbol{D} is not correct because total pressure is not divided by the moles of chlorine	

Question Number	Answer	Mark		
$\mathbf{7 (b)}$	The only correct answer is B	(1)		
	\boldsymbol{A} is not correct because K_{p} has been used as total pressure and the two partial pressures quoted are subtracted from it	\boldsymbol{C} is not correct because the two partial pressures have been multiplied by K_{p} instead of dividing by K_{p}		
	\mathbf{D} is not correct because this is the inverse value		\quad	
:---				

Question Number	Answer	Mark
$\mathbf{8 (a)}$	The only correct answer is B	(1)
	\boldsymbol{A} is not correct because low pressure favours the reactants \boldsymbol{C} is not correct because both high temperature and low pressure favour the reactants \boldsymbol{D} is not correct because high temperature favours the reactants	

Question Number	Answer	Mark
$\mathbf{8 (b)}$	The only correct answer is C A is not correct because the value of K_{c} is a ratio not a quantity of a substance	(1)
	B is not correct because 1 mol of $C O$ cannot form more than 1 mol of methanol \boldsymbol{D} is not correct because this ignores the $C O$	

Question Number	Answer	Mark
9(a)	The only correct answer is B	(1)
	A is not correct because the -148 has been omitted \boldsymbol{C} is not correct because the -148 has been omitted and the value has not been halved Dis not correct because the enthalpy value has to be halved for one mole of chloride ions	

Question Number	Answer	Mark
$\mathbf{9 (b)}$	The only correct answer is D \boldsymbol{A} is not correct because hydration is from gaseous ions not those in a lattice \boldsymbol{B} is not correct because hydration is nothing to do with the forming of ions \boldsymbol{C} is not correct because potassium ions are larger	(1)

Question Number	Answer	Mark
$\mathbf{1 0}$	The only correct answer is C	(1)
	\boldsymbol{A} is not correct because these are the base and its conjugate acid	
	\boldsymbol{B} is not correct because these are not conjugate pairs	
\boldsymbol{D} is not correct because these are not conjugate pairs		

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 1 (a)}$	$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(1.34 \times 10^{-5} \times 0.0500\right) /=8.185 \ldots \times 10^{-4}(1)$		(2)
	$\mathrm{pH}=\left(-\log 8.185 \ldots \times 10^{-4}=3.08696\right)=3.09 \quad(1)$	$3 / 3.1$ $\geq 3 \mathrm{dp}$ Correct answer without working scores 2 Allow TE from incorrect $\left[\mathrm{H}^{+}\right]$only if $\mathrm{pH}<7$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 1 (b) (\mathbf { i })}$	$\mathrm{pH}=(14-(-\log 0.04)=) 12.60206 / 12.60 / 12.6$	13	(1)
	OR		
	$\mathrm{pH}=-\log \left(1.0 \times 10^{-14} \div 0.04\right)=12.60206 / 12.60 / 12.6$		
	IGNORE SF except 1 or 2		

	Acceptable Answers			Reject	Mark

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 1 (b) (i i i)}$	pH at half equivalence point $=\mathrm{p} K_{\mathrm{a}}=4.9$ to $5.0 \quad$ (1)		(2)
	$K_{\mathrm{a}}=($ inv $\log -\mathrm{pH}=$ inv $\log -4.9=1.26 . . \mathrm{x}$ $\left.10^{-5} / 0.0000126\right)$ or (inv log $-\mathrm{pH}=$ inv $\log -5.0=1.00 \times$ $\left.10^{-5} / 0.0000100\right)$ $=1.0 \times 10^{-5} / 0.000010 /$ $1.3 \times 10^{-5} / 0.000013\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Correct final answer scores (2)		
		(1)	Not 2 SF Incorrect units

Question Number	Acceptable Answers	Reject	Mark
11(b)(iv)	Indicator is thymolphthalein ALLOW Alizarin yellow R if the pH has been given as $\begin{equation*} 13 \text { in (b)(i) } \tag{1} \end{equation*}$ Because the pH range of the indicator must lie within the large / vertical pH change ALLOW the pH range overlaps with the vertical part of the sketch / the equivalence point/neutralisation point/end point lies with the pH range of the indicator / $\mathrm{p} K_{\text {in }}$ value is within the vertical part of the sketch ALLOW Max (1) if a weak acid-weak base titration curve given in (b)(ii) and the comment made that no indicator would be suitable because there is no vertical section of the curve Marking point 2 is dependent on marking point 1		(2)

Question Number	Acceptable Answers	Reject	Mark
11 (c)	Method 1 Marking point 1 Initial moles of butanoic acid $=0.025 \times 0.06=1.5 \times 10^{-3}(\mathrm{~mol})$ and moles of alkali $=$ butanoate $=0.015 \times 0.08=1.2 \times 10^{-3}(\mathrm{~mol})$ Marking point 2 Equilibrium moles of butanoic acid in buffer $=$ $\begin{equation*} \left(1.5 \times 10^{-3}-1.2 \times 10^{-3}\right)=3(.0) \times 10^{-4}(\mathrm{~mol}) \tag{1} \end{equation*}$ Marking point 3 Concentration of hydrogen ions $\begin{align*} {\left[\mathrm{H}^{+}\right] } & =\left(K_{\mathrm{a}} \times\left(3 \times 10^{-4} \div 0.04\right) \div\left(1.2 \times 10^{-3} \div 0.04\right)\right) \\ & =3.75 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ Marking point 4 $\begin{equation*} \mathrm{pH}=\left(-\log 3.75 \times 10^{-6}\right)=5.42597 / 5.426 / 5.43 / 5.4 \tag{1} \end{equation*}$ Method 2 (use of the Henderson-Hasselbalch equation) $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left(\left[\mathrm{A}^{-}\right] \div[\mathrm{HA}]\right)$ Marking point 1 Initial moles of butanoic acid $=0.025 \times 0.06=1.5 \times 10^{-3}(\mathrm{~mol})$ and moles of alkali $=$ butanoate $=0.015 \times 0.08=1.2 \times 10^{-3}(\mathrm{~mol})$ Marking point 2 Equilibrium moles of butanoic acid in buffer $=$ $\begin{equation*} \left(1.5 \times 10^{-3}-1.2 \times 10^{-3}\right)=3(.0) \times 10^{-4}(\mathrm{~mol}) \tag{1} \end{equation*}$ Marking point 3 [butanoic acid] in buffer $=\left(3 \times 10^{-4} \div 0.04\right)=7.5 \times 10^{-3}$ (mol dm ${ }^{-3}$) and [butanoate] $=\left(1.2 \times 10^{-3} \div 0.04\right)=0.030(\mathrm{~mol}$ dm^{-3}) and $\begin{equation*} \mathrm{p} K_{\mathrm{a}}=4.8239 \ldots \tag{1} \end{equation*}$ Marking point 4 $\begin{align*} & \mathrm{pH}=\left(4.8239 \ldots+\log \left(0.030 \div 7.5 \times 10^{-3}\right)\right) \\ & =5.42597 / 5.426 / 5.43 / 5.4 \tag{1} \end{align*}$ Correct answer without working scores (4) Ignore SF except 1SF	5	(4)

Question Number	Acceptable Answers	Reject	Mark
*11(d)	Marking point 1 Reference to (large) reservoirs/excess of both ethanoic acid and ethanoate ions/sodium ethanoate ALLOW Reference to (large) reservoirs/excess of both the acid and its conjugate base/salt Marking point 2 Reference to added OH^{-}ions reacting with ethanoic acid OR $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$ ALLOW Reference to added OH^{-}ions reacting with hydrogen ions to form water / $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ followed by further dissociation of the ethanoic acid Marking point 3 The concentrations of ethanoic acid and ethanoate ions do not change (significantly and hence the pH doesn't change appreciably) / the ratio of [ethanoic acid]: [ethanoate ion] does not change (significantly and hence the pH doesn't change appreciably) ALLOW the ratio of ethanoic acid : ethanoate ion does not change (significantly and hence the pH doesn't change appreciably) IGNORE Keeps pH constant	Reservoir of H^{+}	(3)

(Total for Question 11 = 15 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (a) (i)}$	ALLOW (1) One mark for two correct isomers if drawn with displayed/structural formulae IGNORE Other formulae if correct skeletal formulae given Orientation/bond angles	(2)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (a) (i i)}$	$\%$ C $=(((12 \times 4) \div 88) \times 100=) 54.545 / 54.55 / 54.5 / 55 \%$	$54 /$	(1)
	IGNORE SF except 1	54.54	

Question Number	Acceptable Answers	Reject	Mark
12(b)	(Reagent) methanol Allow methan-1-ol IGNORE Strong acid such as sulfuric acid/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ $\begin{equation*} \left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\right) \mathrm{CH}_{3} \mathrm{OH} \quad\left(\rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOCH}_{3}+\right) \mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ IGNORE state symbols even if incorrect Mark independently	NaOH $\begin{equation*} \mathrm{C}_{4} \mathrm{HO} \tag{1} \end{equation*}$	(2)

Question Number	Acceptable Answers	Reject	Mark
12 (c)(i)	Accept formulae and names in any order (Equation) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ Allow ionic equation $\begin{equation*} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \tag{1} \end{equation*}$ (Names) (Sodium) ethanoate and ethanol Allow ethan-1-ol IGNORE state symbols even if incorrect Mark independently No TE on incorrect ester and its hydrolysis products	$\mathrm{CH}_{3} \mathrm{COO}-\mathrm{Na}$	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (c) (i i)}$	(It is a catalyst because) alkali speeds up the reaction (compared to water) IGNORE comments on activation energy	Reaction goes to completion/ Yield is increased	(2)
	(It is not a catalyst because) the amount of alkali present would decrease/ would be used up / is not regenerated	(1)	
IGNORE references to the alkali taking part in the reaction			

Question	Acceptable Answers			Reject	Mark
*12 (d)	For marking points 1 to 4, use the table below for reference and award 1 mark for each complete row.				(5)
		Ethyl ethanoate	Methyl propanoate		
	Similarities (any 2 from)	Both have			
		3 hydrogen or proton environments			
		Peak area 3:2:3			
		Singlet: quartet: triplet (any order)			
		Triplet at 0.1-1.9 / peak area 3 at 0.1-1.9			
		Peaks at $\delta=0.1-1.9,1.7-3.0$ and 3.0-4.2			
	Differences (any 2 from)				
	Quartet peak	at $\delta=3.0-4.2$	at $\delta=1.7-3.0$		
	Singlet peak	at $\delta=1.7-3.0$	at $\delta=3.0-4.2$		
	Peak with area 2	$\text { at } \delta=3.0-4.2$	at $\delta=1.7-3.0$		
	(Singlet) peak with area 3	$\text { at } \delta=1.7-3.0$	at $\delta=3.0-4.2$		
	Peak at$\delta=3.0-4.2$	is a quartet	is a singlet		
		has area 2	has area 3		
	Peak at	is a singlet	is a quartet		
	$\delta=1.7-3.0$	has area 3	has area 2		
	Marking point 5 Suitable explanation of one splitting pattern to include reference to ($n+1$) rule				
	Example of annotated diagrams:				
		Triput Anem 3 $\mathrm{H}+\mathrm{C}-\mathrm{C}$ $\delta=0.1-1 \cdot 9$	Quartat singlet 3 Area=2 Area $=3$ $1+-C-C=0$ $\mathrm{H}-\mathrm{C}-0$ $\delta=3 \cdot 0 \cdot 4 \cdot 2$		
	These diagrams provide evidence for marking points 1 to 4 inclusive and would thus score (4)				

Question Number	Acceptable Answers	Reject	Mark
12 (e)(i)	(monomer structures in any order) OR ACCEPT structural, displayed and /or Kekulé formulae, or any combination, such as $\mathrm{HOOC}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COOH}$ $\mathrm{ClOC}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COCl}$ for the diacid / diacyl chloride OR $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH} /\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ for the diol		(2)

Question Number	Acceptable Answers	Reject	Mark
12(e)(ii)	Suitable diagram, e.g. Ester link and continuation 'bonds' Rest of repeat unit correct ACCEPT use of displayed/skeletal formulae ALLOW more than two repeat units ALLOW $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$ IGNORE missing brackets or use of 'rounded' brackets	Missing 'H's	(2)

Question Number	Acceptable Answers	Reject	Mark
13(a)	Any two correct formulae scores 1 All three correct formulae scores 2 Primary - $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{I} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I} /$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{I}$ Secondary - $\mathrm{CH}_{3} \mathrm{CHICH}_{2} \mathrm{CH}_{3} / \mathrm{CH}_{3} \mathrm{CHIC}_{2} \mathrm{H}_{5}$ Tertiary - $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CI}$ COMMENT Penalise skeletal / displayed formulae once only but ALLOW 'semi-structural' e.g. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$ and IGNORE missing brackets i.e. allow $\mathrm{CH}_{3} \mathrm{CI}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$ or $\mathrm{CH}_{3} \mathrm{CICH}_{3} \mathrm{CH}_{3}$	$\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CI}$	(2)

Question Number	Acceptable Answers	Reject	Mark
13(b)(i)	First order with respect to $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$ Comparing Expts 2 and 3 the rate doubles as the concentration doubles (and $\left[\mathrm{OH}^{-}\right.$] does not change) First order with respect to OH^{-} Comparing Expts 1 and 2 the rate quadruples as the concentration quadruples (and $\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}\right]$ does not change) ALLOW comparison of Expts 1 and 3 if the order w.r.t. to one reactant has already been found		(4)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (b) (i i) ~}$	They are spectator ions / they do not take part in the reaction	ALLOW (Sodium and potassium ions) are not involved in the rate determining step IGNORE reference to zero order or taking part in a fast step	

Question Number	Acceptable Answers	Reject	Mark
13(c)(i)	Suitable reaction mechanism to include: Marking point 1 Curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to/just beyond Br and dipole on $\mathrm{C}-\mathrm{Br}$ bond Marking point 2 Formation of carbocation and bromide ion ALLOW bromide ion / NaBr shown as a final product Marking point 3 Curly arrow from lone pair on hydroxide ion to C+ on carbocation and formation of alcohol product Exemplar Step 1 (slaw) $\text { Step } 2 \text { (fast) }$ ALLOW (for a correct $\mathrm{S}_{\mathrm{N}} 2$ reaction) M1 for correct dipole and curly arrow showing $\mathrm{C}-\mathrm{Br}$ bond breaking M3 for correct curly arrow from a lone pair on the OH^{-}ion to the $\delta+$ carbon, either in a transition state or not, and the alcohol product	Incorrect starting bromoalkane Curly arrow from the charge on OH^{-}	(3)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (c) (i i)}$	Slow step only involves one species / only 2-bromopentane is involved in the rate- determining step / there are two steps, first slow and second fast /	$\mathrm{S}_{N} 2$	(1)
OH as not involved in the slow step and so the reaction is first order (so consistent with the rate equation) / so only 2-bromopentane is in the rate equation			

Question Number	Acceptable Answers	Reject	Mark
13(c)(iii)	Carbocation is (trigonal) planar about the C+ ALLOW Reaction site is (trigonal) planar EITHER Attack by nucleophile/ OH^{-}can be (equally) from the top or bottom/either side (of the carbocation) Forming a racemate/racemic mixture/equal number of moles of each optical isomer OR The bromide ion obstructs attack by the hydroxide ion Forming mixture of two optical isomers in which one predominates TE on $\mathbf{S}_{\mathrm{N}} \mathbf{2}$ in (c)(i): Attack by nucleophile is only from one side of the molecule The bromide ion leaves from the other side of the molecule / molecule inverts Forming only one optical isomer	Halogenoalkane is planar	(3)

Question Number	Acceptable Answers	Reject	Mark
13(d)	Gradient $=(-2.5 \div 0.0004=)-6250 \pm 50(\mathrm{~K})$ Activation Energy $=(-(-6250 \times 8.31))$ $=+51937.5 / 51900 / 52000 \mathrm{~J} \mathrm{~mol}^{-1}$ OR $\begin{equation*} +51.9 / 52 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{equation*}$ Value in the range 51-53 Sign and units ALLOW Max (2) for TE for incorrect slope $x-8.31$ IGNORE SF	K^{-1} Incorrect units Negative value Incorrect units	(3)

(Total for Question 13 =17 marks) Total for Section B = 50 marks

Section C

Question Number	Acceptable Answers	Reject	Mark
14(a)(i)	Any two from: Bubble(s)/fizzing/effervescence (White) Liquid/paste produced ALLOW Solution forms Temperature decreases Pungent smell (of ammonia)/pungent gas IGNORE Gas produced Chemical test for ammonia and water	Incorrect chemical tests and incorrect observations e.g. white ppte / misty fumes	(2)

Question Number	Acceptable Answers	Reject	Mark
14(a)(ii)	(High) positive value is expected because: 3 moles $\rightarrow 13$ moles ALLOW More moles of product (then reactant) (two) solids \rightarrow gas and/or liquid (+ one solid) Alternative answer (High) positive value is expected because: Entropy of the surroundings for an endothermic reaction is negative The reaction is feasible with the total entropy being positive (so entropy of the system has to be a large enough positive value for this to be true)	Negative value scores (0) Incorrect numbers of moles quoted Molecules	(2)

Allow TE throughout all parts (b)(i)-(iv) even if the calculation results in an incorrect sign

Ignore SF, except 1SF, in (b)(i), (b)(iii) and (b)(iv)

Question Number	Acceptable Answers	Reject	Mark
14 (b)(i)	$\begin{align*} \Sigma S^{\ominus}(\text { products })= & ((2 \times 192.3)+(2 \times 69.9)+213.8=) \\ & (+) 738.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \tag{1} \end{align*}$ $\begin{equation*} \Sigma S^{\ominus}{ }_{\text {(reactants })}=((2 \times 151.1)+99.7=)(+) 401.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \tag{1} \end{equation*}$ $\begin{equation*} \Delta S_{\text {system }}^{\ominus}=(738.2-401.9=)+336.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \tag{1} \end{equation*}$ Correct answer without working scores (3)		(3)

Question Number	Acceptable Answers	Reject	Mark
14(b)(ii)	$\begin{align*} & \Sigma \Delta H^{\theta}(\text { products })=((2 \times-285.8)+(2 \times-46.1)+-992.1=) \\ &-1655.9\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & \text { and } \\ & \Sigma \Delta H^{\ominus}{ }_{(\text {reactants })}=((2 \times-365.6)+-944.7=) \\ &-1675.9\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1}\\ & \Delta H^{\text {reaction }}=(-1655.9--1675.9=)+20 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{align*}$ Correct answer without working scores (2)		(2)

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{1 4 (b) (i i i) ~}$	Δ S $^{\ominus}$ surroundings $=(-\Delta H \div T)=-\frac{20000 \mathrm{~J} \mathrm{~mol}^{-1}}{298 \mathrm{~K}}$	(1)		(2)
	(2) Correct answer without working scores (2)	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (b) (i v) ~}$	ΔS^{\ominus} total $=\Delta S^{\ominus}$ system $+\Delta$ S $^{\ominus}$ surroundings ΔS^{\ominus} total $=+336.3-67.1$ $=+269.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$		(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (c) (\mathbf { i) })}$Molecules of chlorine disperse / diffuse / spread / mix into the top jar ALLOW Chlorine/it fills the (new) gas jar Therefore (the system has) greater entropy / (1) greater randomness / greater disorder M2 is dependent on M1	Reacts	(2)	

Question Number	Acceptable Answers	Reject	Mark
14(d)	General shape of increase from left to right ALLOW straight line Two vertical stages for melting and boiling Labelling to include the use of 1074 K for melting and 1686 K for boiling temperature	Horizontal sections	(3)

Question Number	Acceptable Answers	Reject	Mark
*14 (e)	Any two from:	Sodium chloride molecules	(2)
	In the solid / lattice, the ions are fixed But in the solution the ions are mobile /more dispersed / more spread out/ more random (so entropy has increased) (Dissolving results in) an increase in the number of moles of particles and from one to two/ $\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$ The hydrogen bonds between the water molecules are disrupted	Due to having more energy	(1)

TOTAL FOR SECTION C (QUESTION 14) = 20 MARKS

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

