Mark Scheme (Results)

October 2020

Pearson International Advanced Level
In Chemistry (WCH15)
Paper 1: Transition Metals and Organic Nitrogen
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code WCH15_01_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question number	Answer	Mark
$\mathbf{1}$	The only correct answer is B (-210)	(1)
	$\mathbf{A} \quad$ is incorrect because this is the stabilisation energy of benzene	
C is incorrect because this is the enthalpy change of hydrogenation for three $C=C$		
D is incorrect because this is $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$ less stable than three $C=C$		

Question number	Answer	Mark
$\mathbf{2}$	The only correct answer is $\mathrm{A}(\mathrm{p}$ orbitals, π bond) B is incorrect because $a \sigma$ bond is not present in the ring of delocalised electrons C is incorrect because s and p orbitals do not overlap to form the ring of delocalised electrons D is incorrect because s and p orbitals do not overlap and $a \sigma$ bond is not formed in the ring of delocalised electrons	(1)

Question number	Answer	Mark
$\mathbf{3}$	The only correct answer is C (ethanoyl chloride and aluminium chloride)	$\mathbf{(1)}$
	A is incorrect because ethanal does not react with benzene	
	B is incorrect because ethanal does not react with benzene	
D is incorrect because the catalyst is incorrect		

| Question
 number | Answer |
| :--- | :--- | :--- |
| $\mathbf{4}$ | The only correct answer is A |
| | $\mathrm{B} \quad$ is incorrect because chlorine does not substitute into the benzene ring in the presence of ultraviolet light
 $\mathrm{D} \quad$ is incorrect because chlorine does not substitute into the benzene ring in the presence of ultraviolet light |

Question number	Answer	Mark
5	The only correct answer is C (6) A is incorrect because the NO_{2} groups can be on carbon atoms $(2,3),(2,4),(2,5),(2,6),(3,4)$ and $(3,5)$ relative to the OH group B is incorrect because the NO_{2} groups can be on carbon atoms $(2,3),(2,4),(2,5),(2,6),(3,4)$ and $(3,5)$ relative to the OH group D is incorrect because the NO_{2} groups can be on carbon atoms $(2,3),(2,4),(2,5),(2,6),(3,4)$ and $(3,5)$ relative to the OH group	(1)

Question number	Answer	Mark
$\mathbf{6}$	The only correct answer is C $(2.98 \mathrm{~g})$ $\mathrm{B} \quad$ is incorrect because the mass of phenyl ethanoate has been multiplied by 0.85 instead of divided by 0.85 \mathbf{D} is incorrect because this is the mass of phenyl ethanoate produced from 3.67 g of phenol	

Question number	Answer	Mark
$\mathbf{7}$	The only correct answer is B $\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$	(1)
	A is incorrect because this contains 92.3% carbon	
	C is incorrect because this contains 90.6% carbon	
D is incorrect because this contains 90.0% carbon		

Question number	Answer	Mark
$\mathbf{8}$	The only correct answer is $\mathrm{D}\left(\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}_{2}{ }^{+} \mathrm{Cl}^{-}\right)$	(1)
	A is incorrect because this compound would not be formed from ethylamine and chloroethane	
	B is incorrect because this compound is formed when hydrochloric acid is added to ethylamine	
C is incorrect because this compound is formed when ethanoyl chloride is added the ethylamine		

Question number	Answer	Mark
$\mathbf{9}$	The only correct answer is $\mathrm{D}\left(\mathrm{HOOCC}_{6} \mathrm{H}_{4} \mathrm{COOH}\right.$ and $\left.\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ A is incorrect because the dicarboxylic acid and the dialcohol are the wrong way around B is incorrect because the dicarboxylic acid and the dialcohol are the wrong way around and there are too many carbon atoms C is incorrect because each monomer must have the same two functional groups to form this polymer	(1)

Question number	Answer	Mark
10	The only correct answer is B (4) A is incorrect because the $1^{\text {st }}$ and $6^{\text {th }}$ amino acids are the same, the $2^{\text {nd }}$ is different, the $3^{\text {rd }}$ and $5^{\text {th }}$ are the same and the $4^{\text {th }}$ is different C is incorrect because the $1^{\text {st }}$ and $6^{\text {th }}$ amino acids are the same, the $2^{\text {nd }}$ is different, the $3^{\text {rd }}$ and $5^{\text {th }}$ are the same and the $4^{\text {th }}$ is different D is incorrect because the $1^{\text {st }}$ and $6^{\text {th }}$ amino acids are the same, the $2^{\text {nd }}$ is different, the $3^{\text {rd }}$ and $5^{\text {th }}$ are the same and the $4^{\text {th }}$ is different	(1)

Question number	Answer	Mark
$\mathbf{1 1}$	The only correct answer is B (ethanal)	(1)
	A is incorrect because carbon dioxide produces a carboxylic acid	
	$\mathbf{C} \quad$ is incorrect because methanal produces a primary alcohol	
	is incorrect because propanone produces a tertiary alcohol	

Question number	Answer	Mark
12	The only correct answer is B A is incorrect because this isomer gives 3 peaks C is incorrect because this isomer gives 5 peaks D is incorrect because this isomer gives 2 peaks	(1)

| Question
 number | Answer |
| :--- | :--- | :--- |
| 13 | The only correct answer is $\mathrm{C}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}\right)$
 is incorrect because there are 6 carbon atoms in the ring, 3 in the side-chain on the left and 2 in the side chain
 on the right
 is incorrect because there are 6 carbon atoms in the ring, 3 in the side-chain on the left and 2 in the side chain
 on the right |

Question number	Answer	Mark
$\mathbf{1 4}$	The only correct answer is $\mathrm{A}\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)$ $\mathrm{B} \quad$ is incorrect because Br has oxidation number +5 and Mn has oxidation number +7 $\mathrm{C} \quad$ is incorrect because Br has oxidation number +5 and Fe has oxidation number +6 $\mathrm{D} \quad$ is incorrect because Br has oxidation number +5 and S has oxidation number +4	$\mathbf{(1)}$

| Question
 number | Answer |
| :--- | :--- | :--- |
| 15 | The only correct answer is $\mathrm{A}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+2 \mathrm{C} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{CO}_{3}{ }^{2-}+\mathrm{CO}\right)$
 $\mathrm{B} \quad$is incorrect because chromium has oxidation number +6 in the reactant and product and no other atom is incorrect because chromium has oxidation number +6 in the reactant and product and no other atom is
 changing oxidation number
 D is incorrect because chromium has oxidation number +6 in the reactant and product and no other atom is
 changing oxidation number |

Question number	Answer	Mark
$\mathbf{1 6}$	The only correct answer is $\mathbf{C}(+6)$	
	$\mathrm{A} \quad$ is incorrect because the maximum oxidation state occurs when all the 3d and 4s electrons are used in bonding	
	D is incorrect because the maximum oxidation state occurs when all the 3d and 4s electrons are used in bonding	

Question number	Answer	Mark
$\mathbf{1 7}$	The only correct answer is $\mathbf{D}\left(\mathrm{NH}_{4}{ }^{+}\right)$	$\mathbf{(1)}$
	$\mathbf{A} \quad$ is incorrect because $\mathrm{CH}_{3} \mathrm{NH}_{2}$ has a lone pair of electrons that can form a dative covalent bond	
	$\mathbf{B} \quad$ is incorrect because CN^{-}has a lone pair of electrons that can form a dative covalent bond	
is incorrect because NH_{3} has a lone pair of electrons that can form a dative covalent bond		

Question number	Answer	Mark
18	The only correct answer is D (coordination number 6, overall charge 4-) A is incorrect because the coordination number should be 6 as there are 6 dative covalent bonds and the ions are Ni^{2+}, two Cl^{-}and two $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, giving an overall charge of 4- $B \quad$ is incorrect because the coordination number should be 6 as there are 6 dative covalent bonds and the ions are Ni^{2+}, two Cl^{-}and two $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, giving an overall charge of 4- $C \quad$ is incorrect because the coordination number should be 6 as there are 6 dative covalent bonds and the ions are Ni^{2+}, two Cl^{-}and two $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, giving an overall charge of 4-	(1)

Question number	Answer	Mark
19	The only correct answer is $C\left(36.7 \mathrm{~cm}^{3}\right)$ A is incorrect because the ratio of oxidation numbers, $4: 7$, has been used and the mole ratios of $\mathrm{MnO}_{4}^{-}: \mathrm{Fe}^{2+}$ should be used B is incorrect because the mole ratio of 5:3 has been used the wrong way around $\mathrm{D} \quad$ is incorrect because the ratio of $7: 4$ has been used and the mole ratios of $\mathrm{MnO}_{4}^{-}: \mathrm{Fe}^{2+}$ should be used	(1)

Question number	Answer	Mark
$\mathbf{2 0}$	The only correct answer is $\mathrm{C}\left(0.15\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\right)$	
	$\mathbf{A} \quad$ is incorrect because this is the concentration with respect to $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	
	$\mathrm{~B} \quad$ is incorrect because this is the concentration with respect to chromium ions	
$\mathrm{D} \quad$ is incorrect because this is the total concentration of all ions		

Section B

Question number	Answer	Additional guidance	Mark
21(a)	- (A Salt bridge containing a solution of) potassium nitrate / KNO 3 - (B Electrode made of) platinum / Pt - (C Solution containing) iron(II) and iron(III) ions / Fe^{2+} and Fe^{3+} (ions)	Ignore any conditions, including concentrations Allow potassium chloride / KCl / sodium nitrate / NaNO_{3} / sodium chloride / NaCl Allow ammonium salts Do not award iron Allow soluble compounds of iron(II) and iron(III) e.g. chlorides, nitrates or sulfates Ignore acid	(3)

Question number	Answer		Additional guidance	Mark
21(b)	- half-equation for bismuthate ions - half-equation for manganate(VII) ions - overall equation	(1) (1) (1)	Examples of equations: $\mathrm{BiO}_{3}^{-}+6 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Bi}^{3+}+3 \mathrm{H}_{2} \mathrm{O}$ Allow half-equation written in reverse $\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$ Allow $-5 e^{-}$on left Allow half-equation written in reverse Stand alone mark $2 \mathrm{Mn}^{2+}+5 \mathrm{BiO}_{3}^{-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+5 \mathrm{Bi}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ Overall equation must be written in direction shown Allow multiples Do not award uncancelled electrons / $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$ Allow \rightleftharpoons in equations Ignore state symbols even if incorrect	(3)

Question number	Answer	Additional guidance	Mark
21(c)	- substitution of values into formula - calculation of E	Example of calculation: $\begin{aligned} & E=-0.74+\frac{8.31 \times 298}{96500 \times 3} \times \ln 0.0100 \\ & E=-0.77939 /-0.7794 /-0.779 /-0.78(\mathrm{~V}) \end{aligned}$ TE on incorrect numbers in correct formula e.g. if $\left[\mathrm{Cr}^{3+}\right]=0.100, E=-0.76(\mathrm{~V})$ No TE on incorrect formula Ignore SF except 1 SF Ignore units, even if incorrect Correct answer with no working scores (2)	(2)

Question number	Answer	Additional guidance	Mark
22(a)(i)	An answer that makes reference to the following points: - the curly arrow should go (from the benzene ring/ π bond / delocalised electrons / inside the hexagon and) towards the nitrogen / $\mathrm{NO}_{2}{ }^{+}$ - the open end of the 'horseshoe' should be pointing towards the tetrahedral carbon / carbon with 4 bonds - the curly arrow should start from the ($\mathrm{C}-\mathrm{H}$) bond	Allow the changes in any order Allow the changes shown in diagrams / amended diagrams in the question Penalise any additional incorrect changes Allow first arrow must be reversed Ignore just 'the curly arrow is incorrect' Ignore just 'the curly arrow should not start from the hydrogen atom' / 'the curly arrow is incorrect’ Ignore use of ion / molecule for hydrogen atom	(3)
Question number	Answer	Additional guidance	Mark
22(a)(ii)	- tin and (concentrated) hydrochloric acid / (concentrated) $\mathrm{HCl}((\mathrm{aq}))$	Allow just 'HCl' for hydrochloric acid Allow iron and (concentrated) hydrochloric acid / (concentrated) $\mathrm{HCl}((\mathrm{aq}))$ Ignore addition of sodium hydroxide / NaOH / alkali added after the acid Ignore mention of heat / catalyst Do not award dilute acid / sulfuric acid / nitric acid	(1)

Question Number	Answer	Additional guidance	Mark
22(b)(i)	An explanation that makes reference to the following points: - the lone pair (of electrons) on the nitrogen atom - overlaps with π cloud / delocalised electrons / delocalise system or interacts with (benzene) ring / delocalised electrons / delocalised system - so the nitrogen atom is less able to accept a hydrogen ion / H^{+}/ proton	Allow pair of electrons for lone pair Allow lone pair on the amine / NH_{2} group Allow increases the electron density in the (benzene) ring / feeds into the delocalised electrons or decreases the electron density on the nitrogen atom Allow the lone pair (of electrons) is less available to accept a hydrogen ion / H^{+}/ proton Allow nitrogen is less able to donate electrons to a hydrogen ion / $\mathrm{H}^{+} /$proton Allow lone pair is less available to form a dative bond with an acid Allow phenylamine for nitrogen Allow ammonia is more able to accept a hydrogen ion / $\mathrm{H}^{+} /$proton	(3)

Question Number	Answer	Additional guidance
22(b)(ii)	A description that makes reference to the following point:	Allow any shade of blue
	• a (pale) blue precipitate forms	Ignore reference to precipitate dissolving lgnore original colour of solution
Do not award any other colours with blue e.g.		
blue-green		

Question number	Answer	Additional guidance	Mark
22(c)(i)	- sodium nitrite / sodium nitrate(III) / NaNO_{2} and hydrochloric acid / HCl (1) - at $5^{\circ} \mathrm{C} /$ between 0 and $10^{\circ} \mathrm{C}$	Allow nitrous acid / $\mathrm{HNO}_{2} / \mathrm{HONO}$ and hydrochloric acid / HCl Ignore concentration of acid Do not award sodium nitrate / NaNO_{3} / nitric ((V)) acid / HNO_{3} Stand alone mark Allow any temperature or range of temperatures within the range 0 and $10^{\circ} \mathrm{C}$ / less than any temperature within that range Allow ice-bath	(2)

| Question
 number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| 22(c)(ii) | • correct structure | (1) |

Question number	Answer	Additional guidance	Mark
22(c)(iii)	- there is restricted rotation around $\mathrm{N}=\mathrm{N} /$ the nitrogen bridge / the azo bridge / nitrogen π bond (and the lone pair of electrons on nitrogen)	Allow no rotation around $\mathrm{N}=\mathrm{N} /$ the double bond Ignore just 'two different groups on N atoms' Do not award the molecule does not rotate Do not award restricted / no rotation around C=C	(1)

| Question
 number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| 22(d) | • other optical isomer | Example of optical isomer: |
| | | (1)
 around the central carbon atom but ignore the
 connectivity of the groups
 Allow the mirror images of the symbols
 Allow subscripts the other side of the symbols
 e.g. ${ }_{5} \mathrm{H}_{6} \mathrm{C}_{2} \mathrm{HC}$ |

(Total for Question 22 = 13 marks)

Question number	Answer	Additional guidance	Mark
23(a)	- expression for volume of oxygen reacting with CH_{4} - expression for volume of oxygen reacting with $\mathrm{C}_{2} \mathrm{H}_{6}$ - calculation of volume of methane - calculation of percentage of methane in mixture	Example of calculation: Let cm^{3} be the volume of methane $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ $x \mathrm{~cm}^{3}$ of CH_{4} reacts with $2 \mathrm{x} \mathrm{cm}{ }^{3}$ of O_{2} $\begin{align*} & \mathrm{C}_{2} \mathrm{H}_{6}+31 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\ & (25-x) \mathrm{cm}^{3} \mathrm{C}_{2} \mathrm{H}_{6} \text { reacts with } 31 / 2(25-x) \mathrm{cm}^{3} \mathrm{O}_{2} \tag{1}\\ & 2 x+31 / 2(25-x)=65 \\ & x=15 \mathrm{~cm}^{3} \\ & \frac{15}{25} \times 100=60 \% \\ & \text { TE on volume of methane } \\ & \text { Correct answer with no working scores (4) } \\ & \text { lgnore SF } \\ & \text { Allow alternative methods } \\ & \text { e.g. } 1 \\ & \text { ratio } \mathrm{CH}_{4}: \mathrm{O}_{2}=1: 2(1) / \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \text { ratio } \mathrm{C}_{2} \mathrm{H}_{6}: \mathrm{O}_{2}=1: 3.5 / 2: 7(1) / \mathrm{C}_{2} \mathrm{H}_{6}+31 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\ & (\mathrm{n}=\mathrm{fraction} \mathrm{of} \mathrm{CH} 4) \\ & 2 \mathrm{n}+3.5(1-\mathrm{n})=\frac{65}{25} / 2.6(1) \\ & \mathrm{n}=\frac{0.9}{15} / 0.6 \text { so } 60 \% \text { methane }(1) \\ & \mathrm{e} . \mathrm{g} .2 \\ & \text { mol }\left(\mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}\right)=\frac{25}{24000}=0.0010412 / 1.0412 \times 10^{-3}(1) \\ & \text { mol } \mathrm{O}_{2}=\frac{65}{24000}=0.0027083 / 2.7083 \times 10^{-3}(1) \\ & \text { ratio mol }\left(\mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}\right): \text { mol } \mathrm{O}_{2}=1: 2.6(1) \\ & \text { so } 60 \% \text { methane }(1) \end{align*}$	(4)

Question number	Answer	Additional guidance	Mark
23(b)	Step 1 - potassium dichromate((VI)) and dilute sulfuric acid / acidified (potassium) dichromate((VI)) (and heat) - equation Step 2 - hydrogen cyanide and potassium cyanide / cyanide ions or potassium cyanide and (sulfuric) acid / hydrogen ions or potassium cyanide and pH 8-10 / alkali - equation Step 3 - lithium tetrahydridoaluminate((III)) / lithium aluminium hydride and dry ether / ethoxyethane (followed by a dilute acid) or hydrogen and nickel / platinum / palladium or sodium and ethanol - equation	Allow correct formulae for all reagents Allow any combination of structural and displayed formulae in equations or skeletal formulae Example of equation for Step 1: Ignore missing $\mathrm{H}_{2} \mathrm{O}$ from equation Reagents for Step 2 conditional on a carbonyl compound Example of equation for Step 2: Reagents for Step 3 conditional on a nitrile Example of equation for Step 3: Allow other correct balanced equations / 4[H] on arrow	(6)

Question number	Answer	Additional guidance	Mark
24(a)(i)	- correct formula of iron(III) hydroxide - rest of equation correct, conditional on correct precipitate	Examples of equation: $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{NH}_{3} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{NH}_{4}{ }^{+}$ or $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{NH}_{3} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+3 \mathrm{NH}_{4}{ }^{+}$ Allow $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$ Ignore state symbols, even if incorrect Ignore square brackets around iron(III) hydroxide formulae	(2)

Question number	Answer	Additional guidance		
24(a)(ii)	• ligand exchange / ligand substitution			
/ ligand displacement			\quad	Allow ligand replacement
:---				
Do not award ligand change / change in co-ordination number / redox / deprotonation in addition to correct answer				

Question number	Answer	Additional guidance	Mark
24(a)(iii)	- 6 bonds between N in diamines and Fe - rest of diagram correct	Example of diagram: Allow $\mathrm{NH}_{2}-\mathrm{Fe}$ on left of structure Conditional on 6 N -Fe bonds Allow $\mathrm{C}_{2} \mathrm{H}$ for $\mathrm{CH}_{2}, \mathrm{H}_{2} \mathrm{~N}$ for NH_{2} etc Allow displayed / skeletal formulae for ligands Ignore bond lengths and bond angles Ignore missing brackets and charge / 3+ on Fe Ignore lone pairs on $\mathrm{N} /$ arrows added to bonds unless pointing towards the nitrogen atoms Do not award two nitrogens from the molecule bonded at 180° to Fe ion	(2)

Question number	Answer		Additional guidance	Mark
24(b)(i)	- any 2 colours - third colour	(1) (1)	Example of table:Oxidation state of vanadium Colour of aqueous solution +3 green +4 blue +5 yellow or colourless Ignore any further description of colour e.g. pale yellow Do not award combined colours e.g. blue/green	(2)

$\left.\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Additional guidance } \\ \hline \text { 24(b)(ii) } & \begin{array}{ll}\text { - it is not a redox reaction because the oxidation number of } \\ \text { vanadium is }(+) 5 \text { in both species }\end{array} & \begin{array}{l}\text { Allow the oxidation number of vanadium remains the } \\ \text { same if one oxidation number given - this may be } \\ \text { shown by the equation }\end{array} \\ \text { (1) } \\ \text { Ignore 'there are no electrons in the equation' } \\ \text { Ignore just 'the oxidation number of vanadium does } \\ \text { not change' } \\ \text { Do not award reference to any atom oxidised or } \\ \text { reduced }\end{array}\right\} \begin{array}{l}\text { Do not award vanadium oxidation number is (+)5 in } \\ \text { both species so it is a redox reaction }\end{array}\right\}$

Question number	Answer	Additional guidance	Mark
24(b)(iii)	An answer that makes reference to the following points: - equation for oxidation of V^{2+} to V^{3+} - $\quad E^{\ominus}$ cell for oxidation of V^{2+} to V^{3+} - equation for oxidation of V^{3+} to VO^{2+} - $\quad E^{\ominus}$ cell for oxidation of V^{3+} to VO^{2+} - VO^{2+} is not oxidised to $\mathrm{VO}_{2}{ }^{+}$/ any further as E^{9} cell is $-0.2(\mathrm{~V})$ / negative	Examples of equations: Allow multiples Ignore state symbols even if incorrect Ignore uncancelled $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$ Penalise uncancelled electrons once only $\mathrm{NO}_{3}{ }^{-}+2 \mathrm{H}^{+}+\mathrm{V}^{2+} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{V}^{3+}$ Allow $\mathrm{Cu}^{2+}+\mathrm{V}^{2+} \rightarrow \mathrm{Cu}^{+}+\mathrm{V}^{3+}$ Allow $1 / 2 \mathrm{Br}_{2}+\mathrm{V}^{2+} \rightarrow \mathrm{Br}^{-}+\mathrm{V}^{3+}$ $E_{\text {cell }}^{0}=(+) 1.06(\mathrm{~V})$ TE on $\mathrm{Cu}^{2+} / \mathrm{Br}_{2}$ chosen as oxidising agent With $\mathrm{Cu}^{2+} E^{\theta}$ cell $=(+) 0.41(0)(\mathrm{V})$ With $\mathrm{Br}_{2} E^{\circ}$ cell $=(+) 1.35(\mathrm{~V})$ $\mathrm{NO}_{3}{ }^{-}+\mathrm{V}^{3+} \rightarrow \mathrm{NO}_{2}+\mathrm{VO}^{2+}$ Allow $1 / 2 \mathrm{Br}_{2}+\mathrm{V}^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Br}^{-}+\mathrm{VO}^{2+}+2 \mathrm{H}^{+}$ $E_{\text {cell }}=(+) 0.46(\mathrm{~V})$ With $\mathrm{Br}_{2} E^{\circ}$ cell $=(+) 0.75(\mathrm{~V})$ Allow this shown in an equation	(5)

Question number	Answer	Additional guidance	Mark
*24(c)	This question assesses the student's ability to show a coherent and logically structured answer with linkages and fully sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content.	Guidance on how the mark scheme should be applied. The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)

- IP1 Comparison - Activation energy
both catalysts increase the rate of reaction by providing an alternative route / mechanism with a lower activation energy
- IP2 Phase
a heterogeneous catalyst is in a different phase from the reactants and a homogeneous catalyst is in the same phase as the reactants / all solutions / gases
- IP3 Example of heterogeneous
example of a heterogeneous catalyst and reaction it catalyses e.g. iron and Haber Process, nickel and hydrogenation of alkenes, platinum in a catalytic converter / with CO and NO
- IP4 Example of homogeneous
example of a homogeneous catalyst and reaction it catalyses e.g. iron(II) / iron(III) ions and reaction between iodide ions and persulfate ions
- IP5 Mechanism of heterogeneous
reactant molecules are adsorbed onto the catalyst surface, the bonds are weakened, reaction takes place then the product molecules are desorbed
- IP6 Mechanism of homogeneous
the transition metal ion is oxidised / reduced to a different oxidation state then changes back to the original oxidation state

Allow this shown on a Maxwell-Boltzmann distribution / reaction profile diagram

Allow (physical) state for phase
Allow heterogeneous catalysts are easy to separate from the reaction mixture / reactants / products and homogeneous catalysts are difficult to separate from the reaction mixture / reactants / products

Allow e.g. reactant molecules bind to active sites for adsorbed /
particles react for bonds weakened /
product molecules leave for desorbed
Allow vanadium(V) oxide reduced to vanadium(IV) and oxidised back to vanadium (V) for the Contact Process

Allow this shown in equations, even if unbalanced Allow donate / receive electrons for oxidised / reduced

Question number	Answer	Additional guidance	Mark
25(a)	- correct equation	Example of equation: $2 \mathrm{HoF}_{3}+3 \mathrm{Ca} \rightarrow 2 \mathrm{Ho}+3 \mathrm{CaF}_{2}$ Allow multiples Ignore state symbols, even if incorrect	(1)
Question number	Answer	Additional guidance	Mark
25(b)(i)	- there is extra stability associated with a half-filled (f-)subshell / one electron in each forbital	Allow $4 f^{7}$ is more stable than $4 f^{8}$ Allow to reduce the repulsion between paired electrons/ electron-electron repulsion (in orbitals) Do not award a half-filled forbital	(1)
Question number	Answer	Additional guidance	Mark
25(b)(ii)	- ([Xe]) $4^{5}{ }^{5}$	Allow $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6} 4 f^{5}$ Allow ([Xe])455 65^{0}	(1)

Question number	Answer	Additional guidance	Mark
25(c)(i)	An explanation that makes reference to the following points: - thulium (ion) $/ \mathrm{Tm}^{3+}$ has more protons (in the nucleus than cerium ion $/ \mathrm{Ce}^{3+}$) EITHER - outer electrons are in the same (sub)shell OR so there will be a greater attraction between the nucleus / protons and the (outer) electrons / outer shell	Allow Tm^{3+} has a greater nuclear charge (than Ce^{3+}) Ignore references to increasing atomic number / charge density Allow f sub-shell Allow same / similar shielding	(2)

Question number	Answer	Additional guidance	Mark
25(c)(ii)	(the lanthanide ions are larger than the transition metal ions (so there is space for more ligands) or there are more orbitals available to accept the lone pairs (from the ligands)		(1)

Question number	Answer	Additional guidance	
25(d)	An explanation that makes reference to the following points: - there are no f electrons in La^{3+} ions	(1)	Allow La^{3+} has the same electronic configuration as Xe Allow no occupied f orbitals Allow f subshell $/ \mathrm{f}$ orbital(s) are empty lgnore reference to numbers of electrons in other orbitals even if incorrect Do not award the difference in energy is outside the visible region Do not award the f-subshell does not split
- so no f-f transitions can take place	(1)	Stand alone mark	

Question number	Answer	Additional guidance	Mark
25(e)(ii)	- identification of \mathbf{X} Justification - $\quad X$ is an alcohol as it gives a red colour with cerium(IV) ammonium nitrate - \mathbf{X} is a tertiary alcohol / not a primary or a secondary alcohol as it does not react with acidified potassium dichromate(VI) - $\quad \mathrm{X}$ has 4 different groups attached to one carbon atom / has a chiral centre / carbon (atom)	Examples of structure of X: or Allow any unambiguous structure, including $\mathrm{C}_{2} \mathrm{H}_{5}$ $/ \mathrm{C}_{3} \mathrm{H}_{7}$ groups, displayed / skeletal formulae Ignore connectivity of OH except $\mathrm{OH}-\mathrm{C}$ on left Allow X is an alcohol as it has general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{OH}$ Ignore ketone	(4)

Question number	Answer		Additional guidance	Mark
25(f)	- calculation of amount of Ce^{4+} used - calculation of amount of 4-aminophenol in $25.0 \mathrm{~cm}^{3}$ - calculation of amount of 4 -aminophenol in $100 \mathrm{~cm}^{3}$ - calculation of mass of paracetamol - calculation of percentage of paracetamol and answer given to 2 or 3SF	(1)	Example of calculation: $\begin{aligned} & \text { Amount of } \mathrm{Ce}^{4+} \text { used }=\frac{21.70 \times 0.100}{1000} \\ & =0.00217 /=2.17 \times 10^{-3}(\mathrm{~mol}) \end{aligned}$	(5)
		(1)	Amount of 4-aminophenol in $25 \mathrm{~cm}^{3}$ $\begin{aligned} & =\frac{0.00217}{2} \\ & =0.001085 /=1.085 \times 10^{-3}(\mathrm{~mol}) \end{aligned}$ TE on amount of Ce^{4+} used	
		(1)	Amount of 4-aminophenol in $100 \mathrm{~cm}^{3}=$ $\begin{gathered} =0.001085 \times 4 \\ =0.00434 /=4.34 \times 10^{-3}(\mathrm{~mol}) \end{gathered}$ TE on amount of 4 -aminophenol in $25 \mathrm{~cm}^{3}$ Allow M3 and M2 in reverse order	
		(1)	(Amount paracetamol in tablet $=$ amount of 4aminophenol in $100 \mathrm{~cm}^{3}$) Mass of paracetamol $=0.00434 \times 151$ $=0.65534(\mathrm{~g})$ TE on amount of 4-aminophenol in $100 \mathrm{~cm}^{3}$	
		(1)	$\begin{aligned} \text { Percentage of paracetamol } & =\frac{0.65534}{0.800} \times 100 \\ & =82 / 81.9 \% \end{aligned}$ TE on mass of paracetamol provided 0.800 is the denominator and answer < 100\% Correct answer given to 2 or 3 SF with no working scores (5)	

