Pearson

Mark Scheme (Results)

January 2017

Pearson Edexcel
International Advanced Subsidiary Level
in Chemistry (WCH05)
Paper 01 General Principles of Chemistry II -
Transition Metals
and Organic Nitrogen Chemistry
(including synoptic assessment)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code WCH05_01_MS_2017*
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

www.igexams.com

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

www.igexams.com

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	D	$\mathbf{1}$
	Incorrect answers A - gradual increase in ionisation energies B - gradual increase in ionisation energies C - gradual increase in ionisation energies	

Question Number	Correct Answer	Mark
$\mathbf{2}$	A	$\mathbf{1}$
	Incorrect answers B - ionic is incorrect C - dative covalent is missing D - covalent is missing	

Question Number	Correct Answer	Mark
$\mathbf{3}$	D	$\mathbf{1}$
	Incorrect answers A - precipitate is soluble in excess sodium hydroxide B - gives a blue precipitate C - precipitate does not dissolve in excess aqueous ammonia	

Question Number	Correct Answer	Mark
$\mathbf{4}$	D	$\mathbf{1}$
	Incorrect answers A - incorrect type of reaction B - incorrect type of reaction C - incorrect type of reaction	

Question Number	Correct Answer	Mark
$\mathbf{5}$	B	$\mathbf{1}$
	Incorrect answers A - basic is missing C - acidic is missing D - these are not redox reactions	

Question Number	Correct Answer	Mark
$\mathbf{6}$	B	$\mathbf{1}$
	Incorrect answers A - incorrect number of hydrogen atoms C - incorrect number of hydrogen atoms D - incorrect number of hydrogen atoms	

www.igexams.com

Question Number	Correct Answer	Mark
$\mathbf{7}$	A	$\mathbf{1}$
	Incorrect answers B - substitution is incorrect C - electrophilic is incorrect D - electrophilic and substitution are both incorrect	

Question Number	Correct Answer	Mark
$\mathbf{8}$	B	$\mathbf{1}$
	Incorrect answers A - does not use the concentration C - solution is not alkaline D-solution is not alkaline	

Question Number	Correct Answer	Mark
$\mathbf{9}$	B	$\mathbf{1}$
	Incorrect answers A - does not use the concentration C - does not use the concentration and no square root D - no square root	

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	C	$\mathbf{1}$
	Incorrect answers A - no benzene ring B - no benzene ring and no amine D - no amine	

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	D	$\mathbf{1}$
	Incorrect answers A - can form an amine B - can form an amine C - can form an amine	

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	B	$\mathbf{1}$
	Incorrect answers A - incorrect volume of oxygen C - incorrect volume of oxygen D - incorrect volume of oxygen	

www.igexams.com

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	C	$\mathbf{1}$
	Incorrect answers A - not used mole ratio B - incorrect mole ratio D - incorrect mole ratio	

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	A	$\mathbf{1}$
	Incorrect answers B - incorrect statement C - incorrect statement D - incorrect statement	

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	C	$\mathbf{1}$
	Incorrect answers A - refluxing is incorrect B - washing is incorrect D - steam distillation is missing	

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	A	$\mathbf{1}$
	Incorrect answers B - incorrect electrode C - incorrect process D - incorrect electrode and process	

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	A	$\mathbf{1}$
	Incorrect answers B - incorrect value C - incorrect sign D - incorrect value and sign	

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	B	$\mathbf{1}$
	Incorrect answers A - Q is not feasible C - Q and R are not feasible D Q is not feasible	

www.igexams.com

Question Number	Correct Answer	Mark
$\mathbf{1 9}$	C	$\mathbf{1}$
	Incorrect answers A - burette error not multiplied by 2 B - burette error not multiplied by 2 and pipette error should not be multiplied by 2 D - pipette error should not be multiplied by 2	

Question Number	Correct Answer	Mark
$\mathbf{2 0}$	D	$\mathbf{1}$
	Incorrect answers A - incorrect value (2 mol HCl and $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ formed so 4 mol NaOH needed) B - incorrect value C-incorrect value	

www.igexams.com

Section B

Question Number	Acceptable Answers	Reject	Mark
21(a)(i)	First mark $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}{ }^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}$ OR $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{HSO}_{4}^{-}$and $\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+} \rightarrow \mathrm{NO}_{2}{ }^{+}+\mathrm{H}_{2} \mathrm{O}$ OR $2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}$ IGNORE state symbols, even if incorrect IGNORE \rightleftharpoons Second mark Curly arrow from on or within the circle towards N of $\mathrm{NO}_{2}{ }^{+}$ ALLOW curly arrow from anywhere within the hexagon ALLOW curly arrow to any part of the $\mathrm{NO}_{2}{ }^{+}$, including to the + charge ALLOW NO ${ }_{2}$ with no charge if $\mathrm{M1}$ not awarded, but no other electrophile Third mark - stand alone Intermediate structure including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon and some part of the positive charge must be within the horseshoe ALLOW dashed line for horseshoe Fourth mark - stand alone Curly arrow from C-H bond to anywhere in the hexagon reforming the delocalised structure Correct Kekulé structures score full marks IGNORE any involvement of HSO_{4}^{-}in the final step	Curly arrow on or outside the hexagon Dotted bonds to H and NO_{2} unless clearly part of a 3D structure	4

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark		
21(a)(ii)	Tin/ Sn and (concentrated) hydrochloric acid / (concentrated) HCl((aq)) ALLOW Iron/ Fe and (concentrated) hydrochloric acid / (concentrated) HCl((aq)) ALLOW then sodium hydroxide / NaOH / alkali IGNORE mention of catalystDilute / Sulfuric acid / Zinc	$\mathbf{1}$			
LiAlH				\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
21(a)(iii)	Benzenediazonium chloride / product / nitrous acid / HNO_{2} decomposes ALLOW unstable for decomposes OR Phenol would form ALLOW benzenediazonium chloride undergoes hydrolysis IGNORE just forms another product / further substitution I compound is volatile	Nitrobenzene / phenylamine decomposes	$\mathbf{1}$

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i v) ~}$	Bond between N and Cl	$\mathbf{1}$	
	Must show + charge, this can be on either nitrogen, between the nitrogens or outside of brackets around the cation and bonds around N and separate Cl^{-}ion IGNORE bond angles Correct Kekulé structure scores the mark		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (\mathbf { v })}$		OR	OH-C
	ALLOW NaO-, provided there is no bond between Na and O IGNORE connectivity of OH if the bond is vertical Correct Kekulé structure scores the mark		

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
21(b)	Stand alone marks If name and formula are given, both must be correct $\mathrm{CH}_{3} \mathrm{Cl}$ / chloromethane OR $\mathrm{CH}_{3} \mathrm{Br}$ / bromomethane OR $\mathrm{CH}_{3} \mathrm{I}$ / iodomethane (Dry) aluminium chloride / $\mathrm{AlCl}_{3} /$ iron(III) chloride / FeCl_{3} OR (Dry) aluminium bromide / $\mathrm{AlBr}_{3} /$ iron(III) bromide / FeBr_{3} OR (Dry) aluminium iodide / AlI_{3} / iron(III) iodide / Fel_{3} IGNORE heat / reflux / other conditions	Addition of acid / alkali / water	2

Question Number	Acceptable Answers	Reject	Mark
*21(c)	IGNORE unbalanced equations / additional incorrect species in equations throughout the answer Oxidation Potassium dichromate((VI)) / $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ and (dilute) sulfuric acid / $\mathrm{H}^{+} /$acidified(aq) (heat / reflux) ALLOW other oxidizing agents eg $\mathrm{KMnO}_{4} / \mathrm{H}^{+}(\mathrm{aq}) /$ Fehling's / Benedict's / Tollens' IGNORE concentration of acid Intermediate - stand alone ALLOW - $-\mathrm{CO}_{2} \mathrm{H}$ and displayed/ skeletal formula Reduction - of benzaldehyde or benzoic acid Lithium tetrahydridoaluminate((III)) / lithium aluminium hydride / LiAlH_{4} and (dry) ether / ethoxyethane / $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ ALLOW sodium tetrahydridoborate(III) / sodium borohydride / NaBH_{4} and water / aq Intermediate - stand alone ALLOW displayed/ skeletal formula IGNORE name, even if incorrect Esterification EITHER React benzoic acid and phenylmethanol and (concentrated) strong acid / hydrochloric acid / HCl / sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$ (and heat / reflux) OR react benzoic acid with PCl_{5} / phosphorus(V) chloride and react benzoyl chloride and phenylmethanol together (at room temperature) IGNORE heat	$\mathrm{HCl}(\mathrm{aq})$ $\mathrm{PCl}_{5}(\mathrm{aq})$	5

www.igexams.com

Question Number	Acceptable Answers							Reject	Mark
22(a)(i)	Sc [Ar]	\uparrow					$\uparrow \downarrow$	Vertical lines	2
	Mn^{3+} [Ar]	\uparrow	\uparrow	\uparrow	\uparrow			with no arrow	
	$\mathrm{Fe}^{2+}[\mathrm{Ar}]$	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow		heads once	
	OR half-headed arrows Any one row correct scores (1) All 3 rows correct scores (2)								

Question Number	Acceptable Answers	Reject	Mark
22(a)(ii)	d-block element: (When the electronic structure is built up according to the aufbau rules) the last electron goes into the d-subshell / (one) of the d orbitals / a d orbital	Just 'electrons present in d-subshell	$\mathbf{2}$
	(1) transition element: Forms / has at least one ion with a partially filled / /most) / incomplete d-subshell / incomplete d orbital(s) valence electrons are in d-subshell	Penalise shell for subshell once only	
ALLOW Forms / has at least one ion with an unpaired d-electron / incomplete d orbital(s) ALLOW reference to one ion or more than one ion (1)			
IGNORE additional properties such as variable oxidation state / forms coloured ions / forms complex ions			

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
22(a)(iii)	EITHER The paired electron / an electron in the full orbital in (3d in) Fe^{2+} is easily removed due to repulsion ALLOW The paired electron in Fe^{2+} requires less energy (to remove) due to repulsion But the (3) d^{5} arrangement / half-filled (3)d-subshell / half-filled (3)d orbitals in Mn^{2+} is stable (so an electron is not easily lost) OR Fe^{3+} and Mn^{2+} both have (3) d^{5} arrangement / halffilled (3)d sub-shell / half-filled (3)d orbitals Stand alone mark The half-filled (3)d-subshell / (3)d orbitals is / are (more) stable (than $3 \mathrm{~d}^{6}$ in Fe^{2+} and $3 \mathrm{~d}^{4}$ in Mn^{3+}) (1)	If 'd orbitals' has not been mentioned somewhere in the answer penalise 'halffilled d orbital' in EITHER or OR answers	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (a) (i v) ~}$	The energy difference between the (sets / splitting of) (3)d orbitals is different (when water ligands are present)	(3)d orbital, if not penalised in (a)(iii) ALLOW The splitting of the (3)d orbitals / sub-shell is (1) different IGNORE just 'they have different energy levels'	2
So they absorb different frequencies / wavelengths (of visible light)	(1)		
IGNORE they have different numbers of d electrons (for d-d transitions) IGNORE just 'they absorb different colours / energy'			

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
22(b)	First mark - comment about As $5 \mathrm{~mol} \mathrm{As}_{2} \mathrm{O}_{3}$ (oxidised) so the change / increase in oxidation number is $20 /$ total $20 \mathrm{e}^{-}$lost / $\begin{equation*} 5 \mathrm{As}_{2} \mathrm{O}_{3}+10 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{As}_{2} \mathrm{O}_{5}+2 \mathrm{OH}^{+}+20 \mathrm{e}^{-} \tag{1} \end{equation*}$ $1 \mathrm{~mol} \mathrm{As}_{2} \mathrm{O}_{3}$ loses $4 \mathrm{e}^{-} / \mathrm{As}_{2} \mathrm{O}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{As}_{2} \mathrm{O}_{5}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$ Second mark - comment about Mn $4 \mathrm{~mol} \mathrm{MnO}_{4}^{-}$(reduced and) change decrease in oxidation number is 20 / total $20 \mathrm{e}^{-}$gained / change in oxidation number of each Mn is 5 / each $\mathrm{Mn}(\mathrm{VII})$ gains $5 \mathrm{e}^{-}$ Third mark - final oxidation number (final oxidation number is) $+2 / \mathrm{Mn}^{2+} / \mathrm{Mn}$ (II) conditional on some working / equation to show this		3

Question Number	Acceptable Answers	Reject	Mark
22(c)(i)	Ligand has 2 atoms that can form (co-ordinate / dative covalent) bonds (to the metal ion) ALLOW Has 2 lone pairs that form (co-ordinate / dative covalent) bonds ALLOW Has 2 lone pairs that it donates (to the metal ion) ALLOW Forms 2 (co-ordinate / dative covalent) bonds (to the metal ion) IGNORE mention of nucleophile	2 ligands attached to the ion Ionic bond Just 'has 2 lone pairs'	$\mathbf{1}$

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (c) (i i) ~}$	ALLOW skeletal / displayed / structural formulae or any combination of these		$\mathbf{2}$
ALLOW delocalised COO^{-}groups	(1)		
IGNORE lone pairs	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (c) (i i i) ~}$	$(+) 2 /$ II / 2+		$\mathbf{1}$

(Total for Question 22 = 15 marks)

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
23(a)(i)	Hydrogen cyanide / HCN (and potassium cyanide / KCN) OR Potassium cyanide / KCN / sodium cyanide / NaCN and $\mathrm{pH}=8 / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HCl}$ IGNORE Concentrations of acids alkali	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	any named strong acid / HCl/ $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}^{+}$ OR any named strong alkali / NaOH / KOH / OH' followed by an acid IGNORE water / concentrations of solutions	Just ‘acid' alkali and acid added at the same time	$\mathbf{1}$

Question Number	Acceptable Answers	Rej ect	Mark
23(a)(iii)	 $\left(\mathrm{Cl}^{-}\right)$ OR OR formation of tertiary or quaternary amines ALLOW CH3 $/ \mathrm{C}_{2} \mathrm{H}_{5}$ ALLOW OH ALLOW zwitterions for secondary / tertiary amines		1

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
23(b)(i)	ALLOW positive charge anywhere on NH_{3} ALLOW delocalised COO ${ }^{-}$group ALLOW structural / displayed / skeletal formulae or any Combination of these IGNORE connectivity of OH group / $\mathrm{NH}_{3}{ }^{+}$		

Question Number	Acceptable Answers	Reject	Mark
23(b)(ii)	 1 structure with 4 atoms / groups in any order Structure on right is mirror image of structure on left		2

www.igexams.com

Question Number	Acceptable Answers	Mark
23(b)(iii)	ALLOW displayed / skeletal / structural formulae or any combination of these apart from the linkages which must be displayed IGNORE brackets and $\mathrm{n} /$ bond angles Polyamide 1 correct displayed amide group in any polyamide rest of structure correct conditional on an amide group - allow this even if amide group is not displayed ALLOW -CO-NH- at start / -CO-NH- at end, but do not allow NH at both ends Polyester 1 correct displayed ester group in any polyester rest of structure correct conditional on an ester group - allow this even if ester group is not displayed ALLOW -O-CO- at start / -CO-O- at end, but do not allow the single bond Os at both ends	4

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
23(c)(i)	ALLOW displayed / skeletal / structural formulae or any combination of these		$\mathbf{1}$
	IGNORE connectivity of OH		

Question Number	Acceptable Answers	Reject	Mark
23(c)(ii)	ALLOW displayed / skeletal / structural formulae or any combination of these e.g $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH} /$ ALLOW zwitterion		1

Question Number	Acceptable Answers	Reject	Mark
23(d)	Yes, because EITHER the C-H stretching is different in alkanes and arenes / benzene OR tyrosine has an absorption at $3030\left(\mathrm{~cm}^{-1}\right)$ and serine does not	1	
OR No, because the broad OH absorption from COOH I (the carboxylic) acid would overlap / mask the different C-H absorptions IGNORE mention of absorptions below $2000\left(\mathrm{~cm}^{-1}\right)$			

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (e) (i) ~}$	5/ five (environments)		$\mathbf{1}$

Question Number	Acceptable Answers			Mark
23(e)(ii)	For 'chemical shift' column, allow any range or any single value within range and allow range in the opposite order e.g 3.5-2.3			3
	Protons in valine	Chemical shift / ppm for TMS	Splitting pattern	
	CH_{3}	0.1-1.9	doublet / (splits into) 2 (1)	
	CH	0.1-1.9	octet / octuplet/ (splits into) 8	
	OH	$\begin{gathered} 10(.0)- \\ 12(.0)(1) \end{gathered}$	singlet	
	IGNORE multiplet			

(Total for Question 23 = 17 marks)

www.igexams.com

Section C

Question Number	Acceptable Answers	Reject	Mark
24(a)(i)	ALLOW any combination of dots and crosses and just dots or just crosses ALLOW any other symbol for extra electrons eg * ALLOW overlapping circles with electrons in correct places IGNORE missing brackets and charge 2 double bonds and 2 single bonds Rest of diagram correct Conditional on M1 IGNORE other diagrams, such as displayed formula IGNORE shape ALLOW 4 single bonds between S and O Rest of diagram correct Conditional on M1	4 double bonds	2

Question Number	Acceptable Answers	Reject	Mark
24(a)(ii)	Tetrahedral		
	ALLOW triangular based pyramidal IGNORE pyramidal		$\mathbf{1}$

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
24(a)(iii)	```Correct answer with no working scores (2) marks EITHER mass of \(\mathrm{PbSO}_{4}\) dissolved in \(250.0 \mathrm{~cm}^{3}\) \(=1.26 \times 10^{-4} \times 303.3 \times \frac{250.0}{1000}\) \(=9.55395 \times 10^{-3}(\mathrm{~g})\) \\ mass undissolved \(\mathrm{PbSO}_{4}\) \\ mol undissolved \(\mathrm{PbSO}_{4}\) \[=1.6485 \times 10^{-4}-3.15 \times 10^{-5} \] \[=1.3335 \times 10^{-4} \] \\ and \\ mass undissolved \(\mathrm{PbSO}_{4}\) \[\begin{aligned} & =1.3335 \times 10^{-4} \times 303.3 \\ & =0.040446 / 0.04045 / 0.0404 / 0.04(0)(\mathrm{g})(\mathbf{1}) \end{aligned} \] \\ TE on mol dissolved in \(250 \mathrm{~cm}^{3}\)```		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (b) (i) ~}$	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3}$		$\mathbf{1}$
	ALLOW multiples		
	IGNORE state symbols, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (b) (i i) ~}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$		
	ALLOW multiples IGNORE state symbols, even if incorrect		$\mathbf{1}$

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
24(c)(i)	$\begin{aligned} & \mathrm{CrO}_{4}^{2-}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+3 \mathrm{e}^{(-)} \rightleftharpoons \\ & \text { and } \\ & -0.13\left(\mathrm{Vr}(\mathrm{OH})_{3}(\mathrm{~s})+5 \mathrm{OH}^{-}(\mathrm{aq})\right. \end{aligned}$ ALLOW \rightarrow IGNORE missing state symbols IGNORE square brackets around $\mathrm{Cr}(\mathrm{OH})_{3}$	Half-cell	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (c) (i i) ~}$	$\mathrm{FeO}_{4}{ }^{2-}(\mathrm{aq}) / \mathrm{FeO}_{4}{ }^{2-}$	Additional species	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (c) (\text { iii })}$	$3 \mathrm{MnO}_{4}{ }^{2-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow$ $2 \mathrm{MnO}_{4}(\mathrm{aq})+\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{OH}^{-}(\mathrm{aq})$ State symbols are required		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (c) (i v)}$	$(+) 0.83(\mathrm{~V}) / .83(\mathrm{~V})$	$-0.83(\mathrm{~V})$	$\mathbf{1}$

www.igexams.com

Question Number	Acceptable Answers	Mark
24(c)(v)	ALLOW half-cells reversed Hydrogen half-cell: Solution $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}^{+}(\mathrm{aq})$ and platinum (black) electrode ALLOW $1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid/ $\mathrm{HCl} /$ nitric acid / HNO_{3} ALLOW $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid Hydrogen gas at $1 \mathrm{~atm} / 1.01 \times 10^{5} \mathrm{~Pa} / 100 \mathrm{kPa}$ pressure / 1 bar Chromium half-cell: Solution $1 \mathrm{~mol} \mathrm{dm}^{-3} /$ equimolar with respect to dichromate / $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ions and chromium(III) $/ \mathrm{Cr}^{3+}$ ions (in the same beaker) Acidified $/ \mathrm{H}^{+}(\mathrm{aq}) / \mathrm{HCl}$ IGNORE concentration of acid and platinum electrode Connections: Salt bridge dipping into both solutions and voltmeter to measure Standard Electrode Potential and complete circuit ALLOW a salt bridge drawn and just labelled with the electrolyte Do not award this mark if the circuit is incorrect, e.g a cell is included. Ignore ammeter.	5

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (d) (i) ~}$	$6: 1$		$\mathbf{1}$
	OR		
	$\frac{6}{1}$ $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}: \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=1: 6 / \frac{1}{6}$ IGNORE all working		

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	Correct answer with no working scores (6) M1 mol S2 $\mathrm{O}_{3}{ }^{2-}=0.030 \times 9.20 / 1000$ $\begin{equation} =2.76 \times 10^{-4} \tag{1} \end{equation*}$ $\mathbf{M 2 ~ m o l ~ C r} 2 \mathrm{O}_{7}{ }^{2-}$ left $=2.76 \times 10^{-4} / 6=\mathbf{4 . 6 0} \times \mathbf{1 0}^{-\mathbf{5}}$ OR $\mathrm{mol} \mathrm{I} 2=2.76 \times 10^{-4} / 2=1.38 \times 10^{-4}$ and $\mathrm{mol} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ left $=1.38 \times 10^{-4} / 3=4.60 \times 10^{-5}$ TE on mol ratio in (i) M3 original $\mathrm{mol} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}=0.015 \times 10.0 / 1000$ $\begin{equation*} =1.50 \times 10^{-4} \tag{1} \end{equation*}$ M4 mol $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ reacted with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ $\begin{aligned} & =1.50 \times 10^{-4}-4.60 \times 10^{-5} \\ & =1.04 \times 10^{-4} \end{aligned}$ and $\mathrm{mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ in $1.00 \mathrm{~cm}^{3}$ diluted wine $\begin{aligned} & =1.04 \times 10^{-4} \times 3 / 2 \\ & =1.56 \times 10^{-4} \end{aligned}$ TE on original $\mathrm{mol} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ and $\mathrm{mol}_{\mathrm{Cr}}^{2} \mathrm{O}_{7}{ }^{2-}$ reacted with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ M5 mol C2 $\mathrm{H}_{5} \mathrm{OH}$ in $100 \mathrm{~cm}^{3}$ diluted wine / $5.00 \mathrm{~cm}^{3}$ original wine $\begin{equation*} =1.56 \times 10^{-4} \times 100=\mathbf{1 . 5 6} \times 10^{-2} \tag{1} \end{equation*}$ TE on $\mathrm{mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ in $1.00 \mathrm{~cm}^{3}$ diluted wine M6 mass $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ in $5.00 \mathrm{~cm}^{3}$ original wine $\begin{align*} & =1.56 \times 10^{-2} \times 46 \\ & =0.7176 / 0.718 / 0.72(\mathrm{~g}) \tag{1} \end{align*}$ TE on $\mathrm{mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ in $100 \mathrm{~cm}^{3}$ diluted wine/ $5.00 \mathrm{~cm}^{3}$ original wine IGNORE SF except 1 SF		6

www.igexams.com

