## Mark Scheme (Results)

October 2019

Pearson Edexcel International Advanced Level In Chemistry (WCH05)
Paper 01 Transition Metals and Organic Nitrogen Chemistry

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2019
Publications Code WCH05_01_1910_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
( ) means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

## Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.


## Section A (multiple choice)

| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{1}$ | The only correct answer is D (+3,+2,+6) | 1 |
|  | A is not correct because the oxidation states in columns 1 and 3 are incorrect |  |
|  | B is not correct because the oxidation states in columns 1,2 and 3 are incorrect <br> C is not correct because the oxidation state in column 2 is incorrect |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{2}$ | The only correct answer is $\mathbf{A}\left(\mathbf{K}_{2} \mathrm{FeO}_{4}\right)$ | 1 |
|  | B is not correct because the oxidation number of iron is +2 |  |
| $\mathbf{C}$ is not correct because the oxidation number of iron is +3 |  |  |
|  | $\mathbf{D}$ is not correct because the oxidation number of iron is +2 |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{3}$ | The only correct answer is B (1,2-diaminoethane) <br> $\boldsymbol{A}$ is not correct because ammonia is monodentate so there would be 6 ligands in <br> an octahedral complex <br> C is not correct because EDTA is hexadentate so there would be 1 ligand in an <br> octahedral complex | 1 |
| D is not correct because water is monodentate so there would be 6 ligands in an <br> octahedral complex |  |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{4}$ | The only correct answer is C (tetrahedral, square planar) | 1 |
|  | A is not correct because $\left[P t\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is not tetrahedral <br> B is not correct because $\left[\mathrm{CrCl}_{4}\right]$ is not square planar and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is not <br> tetrahedral <br> D is not correct because $\left[\mathrm{CrCl} 4_{4}\right]$ is not square planar |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{5}$ | The only correct answer is B (+3) <br> A is not correct because the oxidation number of sulfur increases by 2 so the <br> oxidation number of each Q decreases by 1 | 1 |
| C is not correct because the oxidation number of sulfur increases by 2 so the <br> oxidation number of each Q decreases by 1 <br> $\mathbf{D}$ is not correct because the oxidation number of sulfur increases by 2 so the <br> oxidation number of each Q decreases by 1 |  |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{6}$ | The only correct answer is D (ionic precipitation) | 1 |
|  | A is not correct because the oxidation number of iron does not change <br> $\mathbf{C}$ is not correct because the water is not produced from H and OH in different <br> molecules |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{7}$ | The only correct answer is $\mathbf{A}\left(\mathbf{C H}_{3} \mathbf{C H O}\right.$ to $\left.\mathbf{C H}_{3} \mathbf{C H}_{2} \mathbf{O H}\right)$ | 1 |
|  | B is not correct because carboxylic acids cannot be reduced to ketones |  |
|  | $\mathbf{C}$ is not correct because hydride ions could not attack an alkene group |  |
|  | $\mathbf{D}$ is not correct because hydride ions could not attack a benzene ring |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{8}$ | The only correct answer is B (SO3) | 1 |
|  | $\mathbf{A}$ is not correct because sulfur dioxide does not react to give benzenesulfonic acid |  |
|  | $\mathbf{C}$ is not correct because the negative ion could not attack a benzene ring |  |
|  | $\mathbf{D}$ is not correct because the negative ion could not attack a benzene ring |  |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 9 | The only correct answer is D (diazonium ion decomposes above $10^{\circ} \mathrm{C}$ ) <br> $\mathbf{A}$ is not correct because nitrous acid does not nitrate the benzene ring <br> $\mathbf{B}$ is not correct because the reaction is not highly exothermic <br> $\mathbf{C}$ is not correct because the low activation energy does not limit the upper temperature value in the range | 1 |
| Question Number | Answer | Mark |
| 10 | The only correct answer is D (is alkaline) <br> A is not correct because ethylamine has only one functional group so cannot form a zwitterion <br> B is not correct because ethylamine has a lone pair on the $N$ atom which attracts protons, lowering $\left[\mathrm{H}^{+}\right]$in water <br> C is not correct because ethylamine has a lone pair on the $N$ atom which attracts protons, lowering $\left[\mathrm{H}^{+}\right]$in water | 1 |
| Question Number | Answer | Mark |
| 11 | The only correct answer is $\mathrm{A}\left(\mathrm{CH}_{3} \mathrm{CONHC}_{6} \mathrm{H}_{5}\right)$ <br> B is not correct because $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CONHC}_{6} \mathrm{H}_{5}$ is the product of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl}$ and $\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ <br> C is not correct because $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONHCH}_{3}$ is the product of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$ with $\mathrm{NH}_{2} \mathrm{CH}_{3}$ <br> D is not correct because $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONHC}_{2} \mathrm{H}_{5}$ is the product of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$ with $\mathrm{NH}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$ | 1 |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 2}$ | The only correct answer is $\mathbf{C}\left(\mathbf{C H}_{\mathbf{3}} \mathbf{N H}_{\mathbf{3}} \mathbf{C l}\right)$ | 1 |
|  | $\mathbf{A}$ is not correct because this is the product of HCl and ammonia |  |
| $\mathbf{B}$ is not correct because an H atom is missing from the formula |  |  |
|  | $\mathbf{D}$ is not correct because there is no CO group in methylamine |  |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 13 | The only correct answer is C (butanone) <br> A is not correct because but-1-ene has four peaks in the low resolution nmr spectrum <br> B is not correct because butanal has four peaks in the low resolution nmr spectrum <br> D is not correct because butanoic acid has four peaks in the low resolution nmr spectrum | 1 |
| Question Number | Answer | Mark |
| 14 | The only correct answer is D (ketone) <br> A is not correct because an alkyl (methyl) group is present <br> $\mathbf{B}$ is not correct because an alkene group is present <br> C is not correct because an amide group is present | 1 |
| Question Number | Answer | Mark |
| 15 | The only correct answer is $\mathrm{D}\left(\Delta S_{\text {total }}\right.$ and $\left.\operatorname{In} K\right)$ <br> A is not correct because $E_{\text {cell }}$ for a chemical reaction is proportional to both $\Delta S_{\text {total }}$ and $\operatorname{In} K$ <br> $\mathbf{B}$ is not correct because $E_{\text {cell }}$ for a chemical reaction is proportional to both $\Delta S_{\text {total }}$ and $\operatorname{In} K$ <br> C is not correct because $E_{\text {cell }}$ for a chemical reaction is proportional to both $\Delta S_{\text {total }}$ and $\operatorname{In} K$ | 1 |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 6}$ | The only correct answer is C (298K and $\left[\mathbf{H}^{+}(\mathbf{a q}) \mathbf{] = 1 . 0 0} \mathbf{~ m o l ~ d m}^{\mathbf{- 3}}\right)$ | 1 |
|  | A is not correct because temperature should not be 273 K <br> B is not correct because temperature should not be 273 K and hydroxide ions are <br> not 1.00 mol dm <br>  <br> $\mathbf{D}$ is not correct because hydroxide ions are not 1.00 mol dm <br>  |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 7}$ | The only correct answer is $\mathbf{C}\left(\mathbf{F e}^{2+} \mathbf{( a q ) )}\right.$ <br> $\mathbf{A}$ is not correct because $\mathrm{H}^{+}$is not a catalyst which can be oxidised by one reactant <br> and reduced by the other. | 1 |
| B is not correct because $\mathrm{Mg}^{2+}$ is not a catalyst which can be oxidised by one <br> reactant and reduced by the other. <br> $\mathbf{D}$ is not correct because the negative hydroxide ions would repel the reactant ions. |  |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 8 ( a )}$ | The only correct answer is B (X) <br> A is not correct because a polymer formed from an amino acid would contain a <br> CONH (peptide) group <br> C is not correct because a polymer formed from an amino acid would contain a <br> CONH (peptide) group | 1 |
| D is not correct because this polymer is formed from a diamine and a dicarboxylic <br> acid, not from an amino acid |  |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 8 ( b )}$ | The only correct answer is A (W) | 1 |
|  | B is not correct because the polymer is a condensation polymer and propenamide <br> is an addition polymer <br> C is not correct because there is no amide group present |  |
|  | $\mathbf{D}$ is not correct because the polymer is not formed from an amide |  |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 9}$ | The only correct answer is B (3.66) | 1 |
|  | A is not correct because the molar masses have been reversed <br> C is not correct because the percentage yields have not been used <br> D is not correct because moles at each stage have been divided by the percentage <br> yields, not multiplied |  |

## Section B

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 20(a) | M1 <br> Al / Mg <br> ALLOW <br> Redox couple eg $\mathrm{Mg}^{2+} / \mathrm{Mg}$ <br> Al or Mg used in equation <br> M2 $2 \mathrm{Al}+3 \mathrm{Mn}^{2+} \rightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{Mn}$ <br> OR $\mathrm{Mg}+\mathrm{Mn}^{2+} \rightarrow \mathrm{Mg}^{2+}+\mathrm{Mn}$ <br> ALLOW <br> Ba, Ca or V for Mg in M2 as TE Ce for Al in M2 as TE $\begin{align*} & 2 \mathrm{M}+\mathrm{Mn}^{2+} \rightarrow 2 \mathrm{M}^{+}+\mathrm{Mn} \text { where } \mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{~K} \\ & \text { as TE }  \tag{1}\\ & \text { IGNORE } \end{align*}$ <br> State symbols even if incorrect <br> Reversible arrows but with correct direction | Li, Na, K, Ca, Rb, U, Ce Use of Ba (not based on data) Use of $\mathrm{Ca}^{2+}$ or $\mathrm{Al}^{3+}$ use of metal below Mn in series (except $V$ which can score a TE in M2) | (2) |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 20(b)(i) | A platinum / Pt <br> ALLOW <br> Platinum with platinum black <br> B potassium nitrate / $\mathrm{KNO}_{3} /$ <br> Sodium nitrate / $\mathrm{NaNO}_{3}$ <br> Allow $C$ and $D$ in either order <br> C potassium manganate(VII) / KMnO4 $($ (aq)) <br> ALLOW <br> Potassium permanganate <br> D manganese(II) sulfate / $\mathrm{MnSO}_{4} / \mathrm{MnCl}_{2}$ / Correct formula for other $\mathrm{Mn}^{2+}$ salts <br> ALLOW <br> 1 mark for formulae of two ions in C and D <br> $\mathrm{Mn}^{2+} / \mathrm{Mn}^{+2}$ / manganese(II) ions <br> $\mathrm{MnO}_{4}^{-}((\mathrm{aq})) /$ Manganate(VII) ions <br> IGNORE <br> Concentrations of solutions | Pt with hydrogen on the surface <br> $\mathrm{KBr}, \mathrm{KI}, \mathrm{KCl}, \mathrm{NaCl}, \mathrm{KOH}$, $\mathrm{K}_{2} \mathrm{SO}_{4}$, just 'nitrate ions' <br> potassium manganate with incorrect oxidation number | (4) |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2 0 ( b ) ( \text { ii) }}$ | $(+) 2.70(\mathrm{~V}) / 2.7$ | Any negative value | (1) |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2 0 ( c )}$ | $4 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{(-)} /$ | Unbalanced equations | (1) |
|  | $4 \mathrm{OH}^{-}-4 \mathrm{e}^{(-)} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ | Ionic equations including <br> $\mathrm{MnO}_{4}^{-}$and $\mathrm{MnO}_{4}^{2-}$ but <br> without electrons | Half equations shown as working before correct <br> final equation <br> lGNORE <br> state symbols even if incorrect <br> reversible arrows |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2 0 ( d ) ( i )}$ | $3 \mathrm{MnO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{MnO}_{4}{ }^{-}+4 \mathrm{OH}^{-}$ <br> ALLOW <br> $3 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{KMnO}_{4}+4 \mathrm{KOH}$ <br> ALLOW Reversible arrows <br> Correct species including charges on each side of <br> equation <br> OR <br> Two correctly written half equations (2 <br> the and $3^{\text {rd }}$ in <br> the table) <br> Correct balancing <br> Fully correct equation in reverse scores (1) <br> IGNORE state symbols even if incorrect | (2) |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 20(d)(ii) | $E^{\ominus}=(0.59-0.56)=(+) 0.03((\mathrm{~V}))$ <br> and <br> thermodynamically feasible (because $E^{\ominus}$ is <br> positive) <br> ALLOW <br> Spontaneous |  | (1) |



| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| *21(b)(i) | M1 <br> Zinc has one more proton/ more protons (so <br> nuclear attraction is greater) <br> OR <br> Zinc has greater nuclear charge <br> OR <br> Copper has one fewer proton so nuclear <br> attraction is smaller <br> OR <br> Atomic number of zinc is higher than copper <br> $(1)$ | Cu has lower charge <br> density | (2) |
| M2 <br> Both have their first electron removed from 4s |  |  |  |
| ALLOW <br> The 4s shell in zinc is full <br> IGNORE <br> Comments on atomic radius <br> Comments about shielding | (1) |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| *21(b)(ii) | In Cu, second electron is taken from 3d <br> subshell / orbital (which must require more <br> energy than from the 4s in zinc) (1) <br> 3d is less well shielded (than 4s in zinc) <br> ALLOW <br> 3d is closer to the nucleus |  | (2) |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| *21(b)(iii) | There are no transitions of electrons (from a lower) to a higher energy level (in the visible region) <br> ALLOW there are no possible d-d transitions <br> the (3)d sub-shell in zinc is full / there are no empty levels in zinc for transitions to occur / <br> (3)d orbitals are completely full OR <br> Reverse arguments for why other ions are coloured | d orbitals are not split no electrons get excited <br> 3d orbital is full The 3d shell is full Zn has a full d orbital Just " Zn is $3 \mathrm{~d}^{10 "}$ Zn has no unpaired electrons | (2) |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2 1 ( c ) ( i )}$ | precipitate (pale) blue <br> and <br> solution dark blue <br> Solution colour must be a darker blue than <br> the precipitate colour <br> IGNORE <br> Gelatinous(precipitate) | Answers where solution is <br> not darker blue than <br> precipitate | (1) |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 21(c)(ii) | $\begin{aligned} & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+4 \mathrm{NH}_{3} \rightarrow} \\ & \quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-} \end{aligned}$ <br> formula of complex ion rest of equation <br> ALLOW <br> Equation with products written $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$ can score both marks <br> Equation using $6 \mathrm{NH}_{3}$ $\begin{align*} & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+6 \mathrm{NH}_{3} \rightarrow} \\ & \quad\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-} \tag{1} \end{align*}$ <br> can score for correct balancing <br> IGNORE <br> Order of ligands in complex ions state symbols even if incorrect | $\begin{aligned} & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+4 \mathrm{NH}_{3} \rightarrow} \\ & {\left[\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]+4 \mathrm{H}_{2} \mathrm{O}} \\ & \text { scores } 0 \end{aligned}$ <br> Equations using $2 \mathrm{NH}_{3}$ | (2) |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 21(d)(i) | Amphoteric |  | (1) |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 21d(ii) | $\begin{aligned} & \mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{4}^{2-} \end{aligned}$ <br> ALLOW $\begin{aligned} & \mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{ZnO}_{2}^{2-}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Zn}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{2-}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Zn}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{4}^{2-}+4 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ <br> IGNORE <br> State symbols even if incorrect | $\begin{aligned} & \mathrm{Zn}(\mathrm{OH})_{3}^{-} \\ & \mathrm{Zn}(\mathrm{OH})_{6}{ }^{4-} \end{aligned}$ | (1) |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 21(e)(i) | $\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$ <br> IGNORE <br> State symbols even if incorrect | (1) |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 21(e)(ii) | M1 |  | (4) |
|  | $\begin{align*} & \text { Mol thiosulfate }=((24.50 \times 0.150) / 1000) \\ & =3.675 \times 10^{-3} / 0.003675 \tag{1} \end{align*}$ | Use of incorrect ratio |  |
|  | $\begin{aligned} & \text { M2 } \\ & \left(\text { Mol I }_{2}=\left(\left(3.675 \times 10^{-3} / 2\right)\right)=1.8375 \times 10^{-3} /\right. \\ & 0.0018375) \end{aligned}$ |  |  |
|  | $\begin{aligned} & \text { Mol Cu in } 25 \mathrm{~cm}^{3}= \\ & \left(\left(2 \times 1.8375 \times 10^{-3}\right)\right) \\ & =3.675 \times 10^{-3} / 0.003675(\mathrm{~mol}) \end{aligned}$ |  |  |
|  | $\begin{align*} & \text { Mass Cu in } 25 \mathrm{~cm}^{3}= \\ & (0.003675 \times 63.5) \\ & =2.3336 \times 10^{-1} / 0.23336(\mathrm{~g}) \tag{1} \end{align*}$ |  |  |
|  | M3 <br> Mass Cu in $250 \mathrm{~cm}^{3}=$ $\begin{equation*} \mathrm{M} 2 \times 10=2.3336(\mathrm{~g}) \tag{1} \end{equation*}$ |  |  |
|  | M4 $\begin{align*} & \% \text { Cu in brass }= \\ & ((2.3336 \times 100 / 3.50)=66.675 \\ & =66.7 \tag{1} \end{align*}$ | Answers > 100\% <br> Answers not to 3SF (M4) |  |
|  | Allow correct rounding to 2 or more SF e.g. |  |  |
|  | Rounding to 0.00368 in M1 gives final answer $66.7657=66.8 \%$ Total score (4) |  |  |
|  | Rounding to 2.33 in M3 gives final answer $66.5714=66.6 \%$ Total score <br> (4) |  |  |
|  | Allow TE at each stage Use of 2:1 ratio only once can give $33.4 \%$ scores 3 |  |  |
|  | Correct answer with no working scores 4 |  |  |
|  | The multiplications in M2 and M3 (x 63.5 and x 10 ) can be done in either order. |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 22(a) | Electrons are not fixed in a particular bond <br> OR <br> not associated with a particular atom/ pair of <br> atoms/ covalent bond <br> OR <br> electrons are shared between three or more <br> atoms <br> OR <br> electrons are not found in a fixed position/in one <br> place <br> OR <br> Electrons are free to move from one bond to <br> another <br> OR <br> electrons are free to move from atom to atom <br> ALLOW <br> Electrons are free to move around a system / <br> molecule / ion / compound <br> move" <br> Electrons are not bonded <br> Electrons shared between <br> two more atoms | Just "elens which can | (1) |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 22(b)(i) | OR <br> OR (with arrows added) <br> ALLOW <br> Bracketed with charge shown outside <br> IGNORE <br> Lone pairs <br> Bond angles | Diagrams with the bond to the R group of the ion not shown <br> Diagrams with no minus sign or two minus signs <br> Dot and cross diagrams <br> Only one arrow | (1) |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 22(b)(ii) | Angle within the range 120-123 ( ${ }^{\circ}$ ) | Just >120 | (1) |
|  | Mark independently from 22(b)(i) |  |  |
| IGNORE |  |  |  |
| Name given with angle even if incorrect |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 22(c)(i) | Number:6 electrons | pi electrons <br> m electrons <br> morbitals | (1) |
| Type of orbital: $p$ <br> OR 2p $/ 2 p_{z} / 2 p_{y} / 2 p_{x}$ <br> IGNORE <br> Hybridised orbitals |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 22(c)(ii) | x-ray diffraction / x-ray crystallography (1) | x-rays <br> x-ray imaging <br> electron density map <br> hydrogenation enthalpy <br> data | (2) |
|  | bonds (between carbon atoms) would be the <br> same length in benzene / <br> Bond length is intermediate between double <br> and single / <br> Bond angles (in ring) are $120^{\circ}$ / the same <br> pi bond and a sigma bond <br> ALLOW <br> Information in labelled diagrams (1) <br> IGNORE <br> It would not show double and single bonds | (1s between a |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| *22(d) | The lone pair on the O (of phenol) <br> is delocalised / <br> interacts with the delocalised ring (in <br> benzene) / <br> increases the electron density of the ring <br> OR <br> The lone pair on the O of methanol is not <br> delocalised / has no delocalised ring to interact <br> with (1) <br> The (C-O) bond in phenol has a partial double <br> bond character <br> ALLOW <br> The (C-O) bond is stronger (1) | The lone pair on O attracts <br> the delocalised ring | (2) |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 22(e)(i) | Dilute /dil nitric acid <br> OR <br> Nitric acid of concentration between 0.5 and 2 <br> mol dm |  |  |
|  | ALLOW $(3 \%$ to $12 \%$ nitric acid) <br> Use of $\mathrm{HNO}_{3}$ instead of the name <br> Use of concentrated/conc if qualified by a <br> concentration in the correct range <br> e.g conc. $\mathrm{HNO}_{3}$ of 2.0 mol dm | Nitrating mixture <br> Any use of sulfuric acid | Dilute / dil nitric acid with <br> incorrect concentration <br> quoted. |$\quad$|  |
| :--- |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 22(e)(ii) | Any two from | Any two non-isomeric <br> compounds | (1) |
|  | ALLOW any pair of isomeric di, tri, or <br> tetranitrophenols <br> Kekule structures <br> IGNORE <br> Connectivity of OH and $\mathrm{NO}_{2}$ | (1) |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 22(e)(iii) | Concentrated nitric acid and concentrated <br> sulfuric acid <br> ALLOW <br> "Concentrated nitric and sulfuric acids" <br> $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})$ <br> $\mathrm{HNO}_{3}(\mathrm{l})$ <br> heat in the range of $50-60^{\circ} \mathrm{C}$ <br> any temperature in this range <br> ALLOW M2 provided nitric and/or sulfuric acid <br> is mention in M1. (1) | Just "heat" <br> Juse "Heat under reflux" | (2) |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 23(a) | IGNORE <br> Comments about London Forces <br> M2 in each method depends on which approach is used. Marks from the two methods cannot be mixed. Information may be given in diagrams. <br> Method 1 <br> M1 <br> amino acids exist as zwitterions <br> M2 <br> the charges are attracted to the (polar) water molecules <br> OR <br> the charges are attracted to the $\mathrm{H}^{\delta+}$ or $\mathrm{O}^{\delta-}$ in water <br> OR <br> There are ion dipole attractions with the water molecules <br> ALLOW <br> There are dipole/dipole attractions with the water <br> molecules <br> (1) <br> Method 2 <br> M1 <br> hydrogen bonds can form (with water) from the amine / $\mathrm{NH}_{2}$ group <br> OR <br> hydrogen bonds can form from the carboxylic <br> acid / COOH / OH group <br> M2 <br> This compensates for energy required to breaking H bonds between water OR <br> Energy change is larger than lattice energy of acid (1) | Just "both amino acids and water are polar molecules" <br> Ionic bonding with water <br> Just "they form hydrogen bonds" <br> H bonds can form between the H in the amino acid and the H in water | (2) |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 23(b) | Ninhydrin (solution) | ALLOW <br> Ninhydrine (solution) <br> Nin-hydrin (solution) | Ninohydrin <br> Ninhydran <br> Ninhydrain <br> Ninhydrate <br> Ninhydride |
| Question <br> Number | Acceptable Answers | Reject | (1) |
| 23(c)(i) | $\mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-/} \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ <br> OR <br> O <br> NH <br> NH | OR <br> OR <br> fully displayed formula | (1) |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 23(c)(ii) | M1 <br> Z contains two OH groups <br> OR <br> Z contains an OH / alcohol group as well as the COOH <br> ALLOW <br> OH and COOH shown in formula <br> M2 formula <br> Look carefully for different orientations of this formula. <br> Amino group, COOH and an H should be on the same C and $\mathrm{CH}_{2} \mathrm{OH}$ in a side chain. <br> ALLOW undisplayed $\mathrm{NH}_{2}, \mathrm{COOH} /$ zwitterion <br> M3 <br> chiral C circled or highlighted in some way ALLOW <br> TE on a chiral C in an incorrect amino acid $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$ <br> $\mathrm{NH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$ | Just "contains COOH " <br> Contains groups other than OH and COOH <br> Contains 2 alcohol groups <br> Answer which does not match formula Eg is an acyl chloride <br> Acid with $\mathrm{NH}_{2}$ and COOH not on same C: <br> $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$ <br> $\mathrm{NH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$ <br> $\mathrm{NH}_{2} \mathrm{C}(\mathrm{OH})\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$ | (3) |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 23(c)(iii) | You will see different orientations of the dipeptide. Look carefully. <br> Dipeptide with peptide bond from either COOH of glycine or serine <br> OR <br> Correct peptide (CONH) group <br> Rest of dipeptide correct <br> ALLOW <br> TE from $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$ or <br> $\mathrm{NH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$ in (c)(ii) <br> OR <br> from incorrect $Y$ as long as it is an amino <br> If two are given both must be correct | Molecules without CONH (peptide) link | (2) |

## Section C

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 24(a) | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ | $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{OH}$ | 1 |
| $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{1}$ |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 24(b) | $\begin{equation*} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}^{+}+\mathrm{AlCl}_{4}^{-} \tag{1} \end{equation*}$ <br> Fully correct mechanisms making propyl benzene from chloropropane score max 3 | $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}^{+}$for electrophile | 4 |
|  |  |  |  |
|  | $\left(\mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{3} /-\mathrm{C}_{2} \mathrm{H}_{5}\right)$ |  |  |
|  | Curly arrow from on or within the circle to positively charged carbon <br> ALLOW <br> Curly arrow from anywhere within the hexagon | Curly arrow on or outside the hexagon |  |
|  | Positive charge on any part of the electrophile |  |  |
|  | Arrow to any part of the $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}^{+}$including to the + charge <br> TE on incorrect electrophile eg $\mathrm{CH}_{3} \mathrm{CO}^{+}, \mathrm{C}_{3} \mathrm{H}_{7}^{+}, \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}^{+}$ <br> (1) |  |  |
|  | Intermediate structure including charge with horseshoe covering at least 3 carbon atoms, and facing the tetrahedral carbon and some part of the positive charge must be within the horseshoe | All bonds to H and CO dotted unless clearly a dots \& wedge 3-D structure |  |
|  | Curly arrow from C-H bond to anywhere in the benzene ring. Correct product shown. | Bond from benzene ring to C of alkyl group |  |
|  | TE on incorrect electrophile eg $\mathrm{CH}_{3} \mathrm{CO}^{+}, \mathrm{C}_{2} \mathrm{H}_{5}^{+}$(1) Correct Kekulé structures score full marks Ignore any involvement of $\mathrm{AlCl}_{4}^{-}$at end | $\mathrm{H}_{2}$ as product |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 24(c) |  |  |  | | OR |
| :--- |
| Oormula drawn right to left <br> ALLOW <br> Formula written with -COCH=CH- between benzene <br> rings <br> cis- / Z- isomer <br> IGNORE <br> Reaction intermediate (with OH) |



| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 24(e)(i) | Water: <br> (anhydrous) calcium chloride / magnesium sulfate / sodium sulfate / silica gel/ $\mathrm{CaCl}_{2}$ $/ \mathrm{MgSO}_{4} / \mathrm{Na}_{2} \mathrm{SO}_{4}$ <br> (1) <br> Carbon dioxide: <br> Calcium hydroxide/ lime/ slaked lime /quick lime /soda lime/ sodium hydroxide/ potassium hydroxide/ $\mathrm{Ca}(\mathrm{OH})_{2} / \mathrm{CaO} / \mathrm{NaOH} / \mathrm{KOH}$ <br> ALLOW <br> Lime water | Name with incorrect formula <br> Copper sulfate /CuSO <br> Cobalt chloride / $\mathrm{CoCl}_{2}$ <br> Concentrated sulfuric <br> acid <br> Calcium sulfate <br> Silicon dioxide <br> Concentrated sulfuric <br> acid <br> Sodium carbonate <br> Sodium <br> hydrogencarbonate <br> Lime soda <br> limestone <br> Gas syringe | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 24(e)(ii) | Mass of oxygen in $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ includes O in <br> compound and O from air/ atmosphere <br> OR <br> Mass of oxygen in $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ includes mass <br> provided for combustion <br> ALLOW <br> Oxygen comes from air as well (as from the <br> compound) <br> IGNORE <br> Oxygen is in both carbon dioxide and water | Oxygen is lost <br> Oxygen evaporates | 1 |


| Question Number | Acceptable Answers |  | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 24(f)(i) | Mol C: $(73.17 / 12)=6.0975$ <br> Mol H $=7.32$ <br> Mol O: $(19.51 / 16)=1.219375$ <br> Empirical formula $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}$ <br> No TE on incorrect moles <br> Answer with no working scores <br> IGNORE sf except 1 sf | (1) <br> (1) <br> (1) |  | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 4 ( f )}$ )ii) | $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ <br> Mark independently |  | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 24(f)(iii) | Find $m / e$ value for the line farthest to the right <br> (of the mass spectrum) (excluding minor <br> isotopes) <br> OR <br> find the line with highest $m / e$ value <br> ALLOW <br> $m / z$ for $m / e$ | m/e of the highest peak / <br> The molecular peak <br> The largest peak <br> Peak with highest <br> molecular mass <br> Just 'position of last peak' | 1 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 24(f)(iv) | Any matching pair <br> M2 depends on a suitable test in M1 <br> If 2 tests are given both must be correct <br> Add bromine(water) <br> ALLOW <br> Add liquid bromine / $\mathrm{Br}_{2}(\mathrm{I})$ <br> a white precipitate (of tribromophenol) is formed <br> IGNORE <br> Decolorisation <br> Antiseptic smell <br> OR <br> Add sodium <br> (1) <br> Effervescence occurs with phenol (and white <br> solid) <br> ALLOW <br> Hydrogen forms with phenol <br> OR <br> Add iron(III) chloride solution <br> Red/ blue/ purple/ violet colour <br> OR <br> Add ethanoyl chloride/ an acyl chloride (1) <br> Characteristic smell/ fruity smell <br> (1) | use of $\mathrm{PCl}_{5}$ use of sodium carbonate <br> White solid without gas formation | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 24(f)(v) | M1 <br> Structure showing $\mathrm{CH}_{3} \mathrm{CO}$ group <br> M2 <br> ALLOW <br> Substituents on any position on benzene ring <br> M3 <br> H in right hand $\mathrm{CH}_{3}$ labelled as singlet <br> AND <br> H in both adjacent $\mathrm{CH}_{2}$ labelled as triplet <br> Award M3 for correct labelling of positions of singlet and triplet on skeletal formula <br> M3 can be awarded following errors in M2 e.g. missing phenolic group. | Missing phenolic OH | 3 |

