P Pearson Edexcel

Mark Scheme (Results)

January 2019

Pearson Edexcel International
Advanced Level
In Chemistry (WCH05)
Paper 01 Transition Metals and Organic Nitrogen

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2019
Publications Code WCH05_01_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	The only correct answer is D \boldsymbol{A} is not correct because not all d block metals are transition elements. \boldsymbol{B} is not correct because the definition should refer to incompletely filled d orbitals. \boldsymbol{C} is not correct because it must refer to ions, not just the atoms of the element.	1

Question Number	Correct Answer	Mark
$\mathbf{2}$	The only correct answer is C	
\boldsymbol{A} is not correct because this sequence is typical of a Group 1		
element.		
\boldsymbol{B} is not correct because this sequence is typical of a Group 3		
element.		
\boldsymbol{D} is not correct because this sequence is typical of a Group 2 element.	1	

Question Number	Correct Answer	Mark
$\mathbf{3}$	The only correct answer is B \boldsymbol{A} is not correct because the oxidation numbers in columns 1 and 2 are incorrect. \boldsymbol{C} is not correct because the oxidation number in column 2 is incorrect. \boldsymbol{D} is not correct because the oxidation number in column 1 is incorrect.	1

Question Number	Correct Answer	Mark
$\mathbf{4}$	The only correct answer is B	1
A is not correct because 2 nitrate ions have a total drop in oxidation number of +6 so each M must increase by 2. C is not correct because 2 nitrate ions have a total drop in oxidation number of +6 so each M must increase by 2.	D is not correct because 2 nitrate ions have a total drop in oxidation number of +6 so each M must increase by 2.	

Question Number	Correct Answer	Mark
$\mathbf{5 (a)}$	The only correct answer is C	1
	\boldsymbol{A} is not correct because V^{3+} is in the least positive half-cell.	
\boldsymbol{B} is not correct because V^{2+} is a reducing agent.		
	\boldsymbol{D} is not correct because Cl^{\prime} is a reducing agent.	

Question Number	Correct Answer	Mark
5(b)	The only correct answer is A	
B is not correct because I- would reduce V(V) to V(IV).		
C is not correct because Cl_{2} would oxidise V(IV) to V(V).		
D is not correct because Cl' is not strong enough to reduce any species in the table.	1	

Question Number	Correct Answer	Mark
$\mathbf{6}$	The only correct answer is A	
\boldsymbol{B} is not correct because E^{θ} is proportional to In K	1	
	C is not correct because E^{θ} is proportional to $\Delta S_{\text {total. }}$	
	\boldsymbol{D} is not correct because E^{θ} is proportional to $\Delta S_{\text {total. }}$	

Question Number	Correct Answer	Mark
$\mathbf{7}$	The only correct answer is D \boldsymbol{A} is not correct because CI has oxidation numbers above and below 0 \boldsymbol{B} is not correct because Br has oxidation numbers above and below +1 \boldsymbol{C} is not correct because S has oxidation numbers above and below +4	1

Question Number	Correct Answer	Mark
$\mathbf{8}$	The only correct answer is D \boldsymbol{A} is not correct because there are not different arrangements of the ligands in space. \boldsymbol{B} is not correct because there are not different arrangements of the ligands in space. \boldsymbol{C} is not correct because there are not different arrangements of the ligands in space.	1

Question Number	Correct Answer	Mark
$\mathbf{9}$	The only correct answer is B	1
	is not correct because it is not oxidised in the reaction. \boldsymbol{C} is not correct because products cannot be separated if they are not desorbed. \boldsymbol{D} is not correct because metals do not form hydrogen bonds	

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	The only correct answer is B	1
	A is not correct because none of the functional groups is ionised. C is not correct because protonation of NH_{2} would not occur at pH 12. D is not correct because protonation of NH_{2} would not occur at pH 12.	

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	The only correct answer is C \boldsymbol{A} is not correct because this is not a good method for separating solids. \boldsymbol{B} is not correct because amino acids are not volatile. \boldsymbol{D} is not correct because a small scale method is more suitable for identification purposes.	1

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	The only correct answer is B	1
	A is not correct because C2 is connected to 4 different groups.	
	C is not correct because C3 is connected to 4 different groups.	
	D is not correct because C2 is connected to 4 different groups.	

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	The only correct answer is A \boldsymbol{B} is not correct because the hydrogen environments on CH_{2} and CH_{3} are equivalent. \boldsymbol{C} is not correct because the only hydrogen environments are on CH_{2} and CH_{3}; this answer is the number of C atoms. \boldsymbol{D} is not correct because the only hydrogen environments are on CH_{2} and CH_{3}; this answer is the number of H atoms.	1

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	The only correct answer is C \boldsymbol{A} is not correct because this is the number of protons on each atom. \boldsymbol{B} is not correct because it is the number of protons on the carbons in the ethyl group and a singlet for the first methyl group.	1
\boldsymbol{D} is not correct because there is a quartet for the CH_{2} but only one triplet for a methyl group.The other methyl gives a singlet.		

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	The only correct answer is B \boldsymbol{A} is not correct because methanol not hydrogen, is the fuel in the cell. C is not correct because the conditions are alkaline, not acidic	1
\boldsymbol{D} is not correct because this is an oxidation; it should be a reduction reaction.		

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	The only correct answer is D	1
	A is not correct because this compound is an acid, not an ester.	
\mathbf{B} is not correct because this compound is not a benzoate.		
	C is not correct because this compound is not a benzoate.	

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	The only correct answer is C	1
	A is not correct because alcohols do not react with chloroalkanes. \boldsymbol{B} is not correct because an addition copolymer would form. \boldsymbol{D} is not correct because carboxylic acids do not react with amides.	

Question Number	Correct Answer	Mark
$\mathbf{1 8 (a)}$	The only correct answer is A	1
	B is not correct because steam distilling is needed.	
	C is not correct because steam distilling is needed.	

Question Number	Correct Answer	Mark
$\mathbf{1 8 (b)}$	The only correct answer is A	1
B is not correct because the C=C will decolourise acidified potassium manganate(VII). C is not correct because phosphorus(V) chloride does not react with C=C or the aldehyde group.	\boldsymbol{D} is not correct because the CHO will form silver with Tollens' solution.	

Section B

Question Number	Acceptable Answers	Reject	Mark
19(a)(i)	X : Platinum / $\mathrm{Pt}_{((\mathrm{s})}$ and Y : Platinum / $\mathrm{Pt}_{((\mathrm{s}))}$		1

Question Number	Acceptable Answers	Reject	Mark
19(a)(ii)	M1:		2
	Iron(II) sulfate should be $2 \mathrm{~mol} \mathrm{dm}^{-3}$		
	OR		
	Iron(III) sulfate should be replaced with		
	$2 \mathrm{~mol} \mathrm{dm}^{-3}$ iron(III) chloride		
	and		
	Iron(II) sulfate should be $2 \mathrm{~mol} \mathrm{dm}^{-3}$		
	ALLOW		
	Any method that produces a equimolar		
	mixture of iron(II) and		
	iron(III) ions		
	eg 1 volume iron(III) sulfate +2 volumes		
	iron(II) sulfate of same concentration		
	M2		
	Mixture should be $1 \mathrm{~mol} \mathrm{dm}^{-3}$ with respect to each iron ion (in standard electrode)		
	ALLOW		
	The mixture is equimolar with respect to each iron ion		
	Calculation showing concentrations are		
	equimolar in mixture		
	(1)		
	M2 is independent of $M 1$		

Question Number	Acceptable Answers	Reject	Mark
19(a)(iii)	Potassium manganate((VII))/ potassium permanganate/ KMnO_{4} (1) Manganese(II) sulfate/ MnSO_{4} (and (dilute) sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$) ALLOW Manganese(II) nitrate/ $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}$ Manganese(II) chloride/ MnCl_{2} (1) IGNORE $\mathrm{MnO}_{4}{ }^{-}, \mathrm{H}^{+}, \mathrm{Mn}^{2+}, \mathrm{H}_{2} \mathrm{O}$, "acidified" Dilute hydrochloric acid/ HCl	Incorrect oxidation number eg Potassium manganate(VI)/ Concentrated sulfuric acid Concentrated hydrochloric acid $\mathrm{MnO}, \mathrm{Mn}(\mathrm{OH})_{2}$	2

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\
\hline \text { 19(a)(iv) } & \begin{array}{l}\text { White and precipitate / ppt(e) / solid } \\
\text { (1) }\end{array} & \begin{array}{l}\text { Just "an insoluble } \\
\text { salt forms" }\end{array}
$$ \& 2

If reference made

to bubbles\end{array}\right\}\)| $\mathrm{Ba}^{2+(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})}$Balanced equation with (1)
 state symbols
 $\mathrm{M1}$ and M2 to be marked independently |
| :--- |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a) (v)}$	Potassium nitrate/ $\mathrm{KNO}_{3} /$ Sodium nitrate / NaNO_{3}	Iodides Group II salts	1
ALLOW	Sodium chloride/ $\mathrm{NaCl} /$ potassium chloride / $\mathrm{KCl} /$ potassium sulfate $/ \mathrm{K}_{2} \mathrm{SO}_{4} /$ sodium sulfate/ $\mathrm{Na}_{2} \mathrm{SO}_{4}$ If name and formulae given both must be correct.		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a) (\mathbf { v i) }}$	$((+1.51)-(+0.77))=(+) \mathbf{0 . 7 4}(\mathrm{V})$	-0.74	1
	ALLOW		
.74			

Question Number	Acceptable Answers	Reject	Mark
19(b)(i)	M1 E^{\ominus} for item $36=+0.17(\mathrm{~V})$ (and $\mathrm{Fe}^{3+} \mid \mathrm{Fe}^{2+}=+0.77(\mathrm{~V})$) OR $\left.E_{\text {cell }}=+0.60(\mathrm{~V})\right)$ M2 $E_{\text {cell }}$ is positive (so the reaction is feasible/ spontaneous) This depends on some data having been used to do a calculation or comparison, even if item $45(0.4 \mathrm{~V})$ or $48(+0.51 \mathrm{~V})$ has been used. ALLOW TE on incorrect positive value in M1 The SO_{2} half cell is less positive than the $\mathrm{Fe}^{3+} \mid \mathrm{Fe}^{2+}$ half cell / SO_{2} is a more powerful reducing agent than Fe^{2+} (so it will work)	$+0.40(\mathrm{~V})\left(E^{\ominus}\right. \text { for }$ reduction of $\mathrm{H}_{2} \mathrm{SO}_{3}$) $\begin{equation*} +0.51(\mathrm{~V}) \tag{1} \end{equation*}$	2

Question Number	Acceptable Answers	Reject	Mark
19(b)(ii)	M1 $\left.\mathrm{Mol} \mathrm{MnO}{ }_{4}^{-}=((24.50)(0.0250) / 1000)\right)$ $\begin{equation*} =6.125 \times 10^{-4} / 0.0006125 \tag{1} \end{equation*}$ M2 Mol Fe ${ }^{2+}$ in $25 \mathrm{~cm}^{3}=\left(6.125 \times 10^{-4} \times 5\right)$ $\begin{equation*} =3.0625 \times 10^{-3} / 0.0030625 \tag{1} \end{equation*}$ M3 Mol $\mathrm{Fe}_{2} \mathrm{O}_{3}$ used to make $250 \mathrm{~cm}^{3}$ solution $\begin{align*} & =\left(\left(3.0625 \times 10^{-3} \times 10\right) / 2\right) \\ & =1.53125 \times 10^{-2} / 0.0153125 \tag{1} \end{align*}$ M4 Mass $\mathrm{Fe}_{2} \mathrm{O}_{3}=$ $\left(159.6 \times 1.53125 \times 10^{-2}\right)$ $=2.443875 \mathrm{~g}$ and $\% \mathrm{Fe}_{2} \mathrm{O}_{3}=((2.443875 / 3.00) \times 100)$ = 81.4625\% / 81.46 \% / 81.5\% ALLOW TE at each stage Ignore SF except 1 SF 81.67 if $\mathrm{Fe}=56$ is used.		4

Question Number	Acceptable Answers	Reject	Mark
19(b)(iii)	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} \quad$ (1) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow$ $2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{Fe}^{3+}$		2
	ALLOW (1) Multiples for any of the equations Correct final equation scores (2) lgnore state symbols even if incorrect.		

Question Number	Acceptable Answers	Reject	Mark
19(b)(iv)	The colour change at the end point with manganate(VII) is clearer / more distinct / more obvious OR With dichromate(VI) the end point would not be a clear change / would be from greenish yellow to yellowish green	Reaction occurs more readily	1
ALLOW MnO 4^{-}does not need an indicator/ is self indicating Any reasonable colours	IGNORE Potassium dichromate is toxic/ Is more expensive/ Is a better oxidising agent/ Has a higher E^{\ominus} value		

(Total for Question 19 = 18 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a) (i)}$	2Cu OR $+4 I^{-} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}$ Multiples IGNORE State symbols even if incorrect	$\mathrm{Cu}_{2} \mathrm{I}_{2}$	1

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \text { 20(a)(ii) } & \left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}\left(4 s^{0}\right) & {[\text { Ar }] 3 d^{10}} & 1 \\ & \text { ALLOW } & & \\ p_{x}^{2} p_{y}{ }^{2} p_{z}^{2} \text { in } 2 p \text { and } 3 p \\ \left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}\left(4 s^{0}\right) \\ \left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{0} 3 d^{10}\end{array}\right]$

Question Number	Acceptable Answers	Reject	Mark
20a(iii)	$\mathrm{Zn}^{2+} / \mathrm{Ga}^{3+}$	As^{5+} Se^{6+} Br^{7+} Ga^{4+}	1
	ALLOW	Ge^{4+}	

Question Number	Acceptable Answers	Reject	Mark		
20(b)(i)	The (3)d orbitals split / (3)d sub shell splits (into two groups). ALLOW (3)d energy level splits Can be shown on a diagram	The orbital splits		\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark		
*20(b)(ii)	M1 The gap between groups of energy levels is different with different ligands/ The 3d orbitals split to different extents with different ligands (1)		3		
	M2 Electrons absorb/ gain energy of specific frequencies when moving from lower to higher levels				
OR Different frequencies of photons are absorbed when the energy gap differs (1)	Emit energy			\quad	M3
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (\text { iii) }}$	Octahedral / octahedron (shape) IGNORE diagrams		1

Question Number	Acceptable Answers	Reject	Mark
20(b)(iv)	3 ligands in an octahedral complex ALLOW $\mathrm{CH}_{2} \mathrm{CH}_{2}$ skeletal: $\mathrm{H}_{2} \mathrm{~N} \xrightarrow{\mathrm{NH}} \mathrm{H}_{2}$ Skeletal not showing Hs on NH_{2} (1) bonds from N to Cu , these can be lines, dots, wedges, arrows ALLOW bond to one end of ligand only/incorrect ligand containing N (1) This structure scores both marks IGNORE Charge, brackets Lone pairs on N	Two nitrogens from one ligand obviously at 180° to the copper	2

Question Number	Acceptable Answers	Reject	Mark
20(b)(v)	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$ OR $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+}$ OR $\begin{equation*} \left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}_{3} \mathrm{O}^{+} \tag{1} \end{equation*}$ IGNORE state symbols even if incorrect lack of [] Tetrahedral ALLOW Square planar M2 independent of M1		2

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array}
$$ \& Acceptable Answers \& Reject \& Mark

\hline 20(b)(vi) \& \begin{array}{l}Step 1: acid-base / neutralisation

Deprotonation (of complex) / protonation

of ammonia

ALLOW (ionic) precipitation (1)

Step 2: Ligand and

Exchange / substitution / replacement

ALLOW

'Ammonia substitutes for water'\end{array} \& electrophile\end{array}\right]\)| (1) |
| :--- |
| Final product:
 $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$
 ALLOW
 $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
 Round brackets, lack of [] brackets
 (1) |

Question Number	Acceptable Answers	Reject	Mark
20(b)(vii)	Step 1: pale blue precipitate/ solid forms (1)	Step 2: (precipitate dissolves to give) deep / dark blue solution (1) Two correct colours with missing states can score (1) The blue colour in step 2 must be a darker blue than the colour in step one. e.g. Either pale blue step 1, blue step 2 or blue step 1, dark blue in step 2	

(Total for Question 20 = 20 marks)

Question Number	Acceptable Answers	Reject	Mark
*21(a)	Isomers of dichlorobenzene in which one has a single bond between the C atoms bonded to Cl and the other has a double bond have not been found. Can be shown on a Kekulé diagram. (1)	Cl can be in positions other than 1 or 2	2
Cl2 would add across each double bond			
(X-ray diffraction shows that)			
all carbon-carbon bonds are the same (length)			
OR intermediate between C=C and C-C (not as			
in Kekulé)			
OR shows that benzene is a regular hexagon			
ALLOW			
All bonds are same length	The electron density is even	(1)	IGNORE Reference to bond angles Benzene undergoes substitution reactions rather than additions

Question Number	Acceptable Answers	Reject	Mark
21(b)	M1 Phenol forms (2,4,6)-tribromophenol / formula ALLOW multiple substitution occurs M2 Phenol reacts with bromine water (at room temperature/ without heating) M3 Benzene forms bromobenzene/ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ / one Br substitutes. M4 Benzene (reacts with bromine and) requires a catalyst of; iron/ iron(III) bromide/ a halogen carrier ALLOW Alternative M3 and M4 M3 Benzene reacts (with bromine) to form $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Br}_{6}$ / 1,2,3,4,5,6 - hexabromocyclohexane /six Br add to it. M4 When heated in uv light M2 and M4 dependent on correct or near miss for M1 and M3 respectively.	Hydroxyl benzene for phenol Bromine water Bromine water	4

Question Number	Acceptable Answers	Reject	Mark
21(c)	M1 $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{AlCl}_{4}^{-}+\mathrm{C}_{2} \mathrm{H}_{5}^{+}$ ALLOW $\mathrm{FeBr}_{3} / \mathrm{FeCl}_{3} / \mathrm{AlBr}_{3}$ for AlCl_{3} + on alkyl can in any position M2 Curly arrow from on or within the circle to $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}$ ALLOW curly arrow from anywhere within the hexagon ALLOW curly arrow to any part of the $\mathrm{C}_{2} \mathrm{H}_{5}^{+}$ion, including the + charge TE for error in electrophile eg $\mathrm{C}_{2} \mathrm{H}_{4}{ }^{+}$ M3 Intermediate structure including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon atom and some part of the positive charge must be within the horseshoe ALLOW dotted horseshoe M4 Curly arrow from $\mathrm{C}-\mathrm{H}$ bond to anywhere in the hexagon, reforming the delocalised structure IGNORE missing H^{+} Reaction of AlCl_{4}^{-}in last step Correct Kekulé structures score full marks	Curly arrow on or outside the hexagon Dotted bonds to H and $\mathrm{C}_{2} \mathrm{H}_{5}$ unless part of a 3D structure	4

Question Number	Acceptable Answers	Reject	Mark
21(d)(i)	(New peak in phenylethene at) $(\mathrm{C}=\mathrm{C}) 1669-1645\left(\mathrm{~cm}^{-1}\right)$ OR $(=\mathrm{C}-\mathrm{H}) 3095-3010\left(\mathrm{~cm}^{-1}\right)$ ALLOW $2962-2853\left(\mathrm{~cm}^{-1}\right)$ (alkane C-H) would not be present in phenylethene. If bonds are identified they must be correct. IGNORE Values for ethylbenzene peaks	Single value which is not a range	1

Question Number	Acceptable Answers	Reject	Mark	
21(d)(ii)		ALLOW Bracket in polymer around side chain or round entire unit		

Section C

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	Compound A : nitrobenzene/ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ (1)	2	
Concentrated nitric acid + concentrated sulfuric acid and temperature $55^{\circ} \mathrm{C}$ ALLOW "Concentrated nitric and sulfuric acid" $50-60^{\circ} \mathrm{C}$	Temperatures above $60^{\circ} \mathrm{C}$ Or less than $50^{\circ} \mathrm{C}$		
"Heat at less than $55^{\circ} \mathrm{C}$ "	(1)		

Question Number	Acceptable Answers	Reject	Mark		
22(a)(ii)	Tin + (concentrated) hydrochloric acid / Sn + HCl ALLOW Iron/Fe for tin IGNORE Hydrogen H_{2} followed by NaOH	Dilute HCl $\mathrm{HCl}(\mathrm{Haq})$	1		
Sulfuric acid				\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
22(b)	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+2 \mathrm{CH}_{3} \mathrm{I} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}+2 \mathrm{HI}$ OR $\begin{aligned} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+2 \mathrm{CH}_{3} \mathrm{l} & \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}\left(\mathrm{CH}_{3}\right)_{2}^{+} \\ & +\mathrm{I}^{-}+\mathrm{HI} \end{aligned}$ ALLOW $\mathrm{C}_{6} \mathrm{H}_{5}$ shown as delocalised ring Reaction shown in 2 steps Error in alkyl group if rest is correct e.g. ethyl for methyl IGNORE Use of molecular formulae		1

Question Number	Acceptable Answers	Reject	Mark
22(c)	$\mathrm{NaNO}_{2}+\mathrm{HCl} /$ sodium nitrite plus hydrochloric acid ALLOW Nitrous acid / HNO_{2} Sulfuric acid for hydrochloric A temperature in the range of $0-10\left({ }^{\circ} \mathrm{C}\right)$ ALLOW $\begin{equation*} <10\left({ }^{\circ} \mathrm{C}\right) \tag{1} \end{equation*}$ Mark independently	Concentrated hydrochloric acid Concentrated sulfuric acid Nitric acid	2

Question Number	Acceptable Answers	Reject	Mark
22(d)(i)		1	

Question Number	Acceptable Answers	Reject	Mark
22(d)(ii)	$\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CONHC}_{6} \mathrm{H}_{5}+$ OR OR Equation with 2 H substituted $2 \mathrm{CH}_{3} \mathrm{COCl}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \rightarrow\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{5}+$ $2 \mathrm{HCl}$ Balanced equation CONH displayed, showing C=O connected to $\mathrm{N}-\mathrm{H}$ and connected to the benzene ring through N ALLOW NH for $\mathrm{N}-\mathrm{H}$ correct skeletal formula	$\mathrm{CH}_{3} \mathrm{NHCOC}_{6} \mathrm{H}_{5}$	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (e) (i) ~}$	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$		1
	ALLOW Elements in any order eg $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~N}$ Answer written beside formula IGNORE $\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COOCH}_{3}$		

Question Number	Acceptable Answers	Reject	Mark
22(e)(ii)	92: $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}{ }^{+}$ ALLOW $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}^{+}$ 120: : $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2} \mathrm{CO}^{+}$ ALLOW $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}^{+}$ OR $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}{ }^{+} / \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{2}{ }^{+}$ Penalise missing charges once only + charge can be anywhere on ion	Formulae with hexagons if number of H not clear $\mathrm{C}_{9} \mathrm{H}_{12}$ Fragments with correct mass which could not form from benzocaine	2

Question Number	Acceptable Answers	Reject	Mark
22(e)(iii)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ OR Skeletal formula, including H on OH group IGNORE Molecular formula $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2} \mathrm{COOH} / \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{H}_{2} \mathrm{NCOOH}^{2}$ OR $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{3}{ }^{+} \mathrm{COOH} / \mathrm{Cl}^{-} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{3}{ }^{+} \mathrm{COOH}$ (1)	2	
OR Skeletal formula, including H on OH group			

Question Number	Acceptable Answers	Reject	Mark
22(f)(i)	Ignore SFs in M1,2,3		4
	M1		
	242.4 of CO_{2} contains		
	$((242.4 \times 12) / 44)=66.11 \mathrm{~g} \mathrm{C}$		
	$76.30 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ contains $((76.3 \times 2) / 18)$		
	$=8.48 \mathrm{~g} \mathrm{H}$		
	M2		
	Mass O =		
	$(100-66.11-8.48-11.86)=$	Calculation based	
	$13.55 \mathrm{~g}$	on mass O in $\mathrm{CO}_{2}+$	
	TE on M1 only if calculation method is correct		
	M3		
	Moles per 100 g :		
	C 5.50		
	H 8.48		
	N 0.847		
	O 0.847		
	ALLOW TE from masses in M1 and M2		
	(1)		
	M4		
	$\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$		
	ALLOW		
	TE on M3 only if there are 13C		
	Elements in any order		
	(1)		

Question Number	Acceptable Answers	Reject	Mark
22(f)(ii)		2	

(Total for Question 22 = 20 marks)
Total for Section C = $\mathbf{2 0}$ marks

Total for Paper = 90 marks

