Pearson Edexcel

Mark Scheme (Results)

Summer 2019

Pearson International Advanced Level In Chemistry (WCH05) Paper 01General Principles of Chemistry II - Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code WCH05_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

$\begin{array}{l}\text { Question } \\ \text { Number }\end{array}$	Answer	Mark
$\mathbf{1}$	The only correct answer is C	(1)
	\boldsymbol{A} is not correct because Al has an oxidation number of +3	
\boldsymbol{B} is not correct because Cr has an oxidation number of +3		
\boldsymbol{D} is not correct because V has an oxidation number of +4		

Question Number	Answer	Mark
$\mathbf{2}$	The only correct answer is C A is not correct because this is the number of moles of iodate(V) ions needed to react with 1 mol of hydrogensulfite ions	(1)
\boldsymbol{B} is not correct because the reaction is not 1:1		
\boldsymbol{D} is not correct because this is the number of moles of		
hydrogensulfite ions needed to react with 2 mol of iodate(V) ions		
(giving an equation with integer coefficients).		

Question Number	Answer	Mark
$\mathbf{3 (a)}$	The only correct answer is A \mathbf{B} is not correct because manganese would react to form a cell system with Mn^{2+} C is not correct because Mn^{2+} is the reducing agent in the system \mathbf{D} is not correct because Mn^{2+} is the reducing agent in the system and manganese would react to form a cell system with Mn^{2+}	(1)

Question Number	Answer	Mark
3(b)	The only correct answer is D A is not correct because all the substances in an electrode system must be present in a half-cell B is not correct because all the substances in an electrode system must be present in a half-cell C is not correct because all the substances in an electrode system must be present in a half-cell	(1)

Question Number	Answer	Mark
$\mathbf{4}$	The only correct answer is D \boldsymbol{A} is not correct because $E_{\text {cell }}$ ® nor K	(1) proportional to neither $\Delta S_{\text {system }}$
\boldsymbol{B} is not correct because $E_{\text {cell }}{ }^{\circledR}$ is proportional to InK but not to		
$\Delta S_{\text {system }}$		
\boldsymbol{C} is not correct because $E_{\text {cell }}$ is proportional to $\Delta S_{\text {total }}$ but not to K		

Question Number	Answer	Mark
$\mathbf{5}$	The only correct answer is A	(1)
	B is not correct because oxidation always occurs at the anode C is not correct because ethanol is oxidised in this cell \boldsymbol{D} is not correct because ethanol is oxidised in this cell	

Question Number	Answer	Mark
$\mathbf{6}$	The only correct answer is A B is not correct because manganese in the +4 oxidation state will have partially filled d orbitals C is not correct because iron in the +4 oxidation state will have partially filled d orbitals \boldsymbol{D} is not correct because copper in the +4 oxidation state will have partially filled d orbitals	(1)

Question Number	Answer	Mark
$\mathbf{7}$	The only correct answer is B \boldsymbol{A} is not correct because oxygen is not a reducing agent and sulfur dioxide is not an oxidising agent C is not correct because the highest stable oxidation number of vanadium is +5	(1)
D is not correct because oxygen is not a reducing agent and sulfur dioxide is not an oxidising agent and because the highest stable oxidation number of vanadium is +5		

Question Number	Answer	Mark
$\mathbf{8}$	The only correct answer is B A is not correct because this shows benzene at a higher energy level than cyclohexa-1,3,5-triene and at a lower energy level than cyclohexane. C is not correct because this shows cyclohexane at the highest energy level instead of the lowest.	(1)
D is not correct because this shows benzene at a higher energy level than cyclohexa-1,3,5-triene.		

Question Number	Answer	Mark		
$\mathbf{9}$	The only correct answer is C A is not correct because this compound does not form an ionic compound with sodium hydroxide or react with ethanol	(1)		
\boldsymbol{B} is not correct because this compound does not decolorise				
bromine water				
\boldsymbol{D} is not correct because this compound does not react with				
ethanol			\quad	
:---				

Question Number	Answer	Mark
$\mathbf{1 0}$	The only correct answer is C A is not correct because ethanal cannot form the required electrophile B is not correct because ethanoic acid cannot form the required electrophile D is not correct because propanone cannot form the required electrophile	(1)

Question Number	Answer	Mark
$\mathbf{1 1}$	The only correct answer is B \boldsymbol{A} is not correct because alkenes form poly(alkenes) from single monomers C is not correct because \boldsymbol{F} reacts with \boldsymbol{G} to form a polyamide \boldsymbol{D} is not correct because \boldsymbol{F} reacts with \boldsymbol{H} to form a polyester	(1)

Question Number	Answer	Mark
12(a)	The only correct answer is C \boldsymbol{A} is not correct because the nitrogen atom furthest left in the structure is in an amine group B is not correct because the other two nitrogen atoms are part of amide groups D is not correct because the hydroxyl group attached directly to the benzene ring is phenolic	(1)

Question Number	Answer	Mark
12(b)	The only correct answer is A B is not correct because the phenolic OH group is very much less basic than the amine group	(1)
C is not correct because the phenolic OH group will not lose a proton in acidic conditions	D is not correct because the carboxylic acid group is very much less basic than the amine group	

Question Number	Answer	Mark
$\mathbf{1 3 (a)}$	The only correct answer is C A is not correct because covalent bonds are not broken when amino acids melt B is not correct because hydrogen bonds cannot form between zwitterions D is not correct because London forces are much weaker than ionic bonds	(1)

Question Number	Answer	Mark
$\mathbf{1 3 (b)}$	The only correct answer is D A is not correct because only alanine has a chiral carbon and exists as optical isomers	(1)
B is not correct because alanine has a chiral carbon and exists as optical isomers C is not correct because glycine does not have a chiral carbon and does not exist as optical isomers		

Question Number	Answer	Mark
13(c)	The only correct answer is D \boldsymbol{A} is not correct because neither structure has a peptide (CONH) link	(1)
B is not correct because the right-hand structure does not have a peptide (CONH) link C is not correct because the left-hand structure does not have a peptide (CONH) link		

Question Number	Answer	Mark
$\mathbf{1 4}$	The only correct answer is B A is not correct because sulfuric acid is not involved in the hydrolysis so does not act as a catalyst C is not correct because the sodium hydroxide effects the hydrolysis \boldsymbol{D} is not correct because this is not the function of the sulfuric acid	(1)

Question Number	Answer	Mark
$\mathbf{1 5}$	The only correct answer is A \boldsymbol{B} is not correct because this is the number of protons in each environment, not the splitting pattern	(1)
	C is not correct because this considers the splitting of the C2 protons to be due only to the C1 protons	
D is not correct because this considers the splitting of the C2 protons to be due only to the C1 protons and additionally shows the hydroxy proton peak being split		

Question Number	Answer	Mark
$\mathbf{1 6}$	The only correct answer is D A is not correct because it will not form a white solid with dilute sulfuric acid. \boldsymbol{B} is not correct because it will not form a pale yellow precipitate when warmed with iodine and sodium hydroxide C is not correct because it will not form a pale yellow precipitate when warmed with iodine and sodium hydroxide or a white solid with sulfuric acid.	(1)

Section B

Question Number	Acceptable Answer	Reject	Mark
17(a)(i)	$E_{\text {cell }}^{\ominus}=+0.40-(-0.74)=(+) 1.14(\mathrm{~V})$ No TE on incorrect half equations $4 \mathrm{Cr}+3 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{Cr}^{3+}+12 \mathrm{OH}^{-}$ OR $4 \mathrm{Cr}+3 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{Cr}(\mathrm{OH})_{3}$ ALLOW Multiples \rightarrow in place of \rightleftharpoons Species and equation in correct direction Balancing ALLOW TE on incorrect half equations from the table eg $4 \mathrm{Cr}^{2+}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{Cr}^{3+}+4 \mathrm{OH}^{-}$ IGNORE state symbols even if incorrect COMMENT Correct E^{\ominus} cell value may be credited in (a)(ii)	$\begin{equation*} -1.14(\mathrm{~V}) \tag{1} \end{equation*}$ uncancelled electrons	(3)

Question Number	Acceptable Answer	Reject	Mark
17(a)(ii)	TE on any positive value in 17(a)(i) The positive E^{θ} cell value indicates that the corrosion of chromium is (thermodynamically) feasible ALLOW spontaneous for feasible E° cell value indicates chromium and oxygen should react / chromium corrodes TE for M1 only on any negative value in 17(a)(i) So the corrosion is kinetically unfavourable / has a high activation energy / slow OR chromium forms a stable / unreactive oxide coating (that protects the metal from corrosion) ALLOW hydroxide for oxide	Just 'needs high energy' Any reference to sacrificial protection	(2)

Question Number	Acceptable Answer	Reject	Mark
17(b)(i)	Correct equation with $E^{\ominus}{ }_{\text {cell }}$ value scores (2) Route 1 Zinc / Zn IGNORE Acids / H ${ }^{+}$ Ionic half-equation $\begin{align*} & \left(\mathrm{Zn}(\mathrm{~s})+2 \mathrm{Cr}^{3+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{Cr}^{2+}(\mathrm{aq})+\mathrm{Zn}^{2+}(\mathrm{aq})\right) \\ & E_{\text {cell }}^{9}[=-0.41-(-0.76)]=(+) 0.35(\mathrm{~V}) \tag{1} \end{align*}$ Route 2 Chromium / Cr $\begin{equation*} E_{\text {cell }}^{\theta}=-0.41-(-0.74)=(+) 0.33(\mathrm{~V}) \tag{1} \end{equation*}$	Other additional reagents	(2)

Question Number	Acceptable Answer	Reject	Mark
17(b)(ii)	Standalone marks Chromium(II) (is readily oxidised back to chromium(III)) (1)	Oxidation to any other oxidation state	(2)
	oxidised by oxygen (in the air) ALLOW by air IGNORE just 'reacts with oxygen (in the air)'	(1)	

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 7 (b) (i i i) ~}$	From green to blue		(1)

	ALLOW violet to blue IGNORE modifiers (eg pale)		

Question Number	Acceptable Answer	Reject	Mark
17(b)(iv)	M1 (energy gap) There is a different energy gap between the (3)d orbitals / in the (3)d subshell ALLOW different d-d splitting (3)d orbitals split differently M2 (explanation of energy gap) Because of the (different) charge / oxidation state / radius / size / charge density / electronic structure / numbers of (d)electrons of the ions M3 (effect of energy gap) So different frequencies / wavelengths of (visible) light / radiation / energy are absorbed / reflected / transmitted OR Photons of different energy are absorbed / reflected / transmitted IGNORE Colour for (visible) light / radiation / energy General explanations of the colour of transition metal complexes even if incorrect	(3)d orbital Just different ions/ligands emitted emitted	(3)

Question Number	Acceptable Answer	Reject	Mark
17(c)(i)	In 17(c)(i) and (ii) two correct formulae scores (1) in (c)(i)		(1)

	Ignore omission of square brackets $\left[\mathrm{CrCl}_{4}\right]^{-}$and tetrahedral		

$\begin{array}{l}\text { Question } \\ \text { Number }\end{array}$	Acceptable Answer	Reject	Mark
$\mathbf{1 7 (c) (\text { (ii) }}$	$\begin{array}{l}{\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} /\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}} \\ \text { and } \\ \text { octahedral }\end{array}$	$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}\right]^{3+}$	(1)
square planar			

Question Number	Acceptable Answer	Reject	Mark		
$\mathbf{1 7 (d) (i)}$	$2 \mathrm{CrO}_{4}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O}$		(2)		
	OR \rightleftharpoons in place of \rightarrow ALLOW Multiples Formulae of both chromium species (in any equation) Correct balanced equation	(1)	Additional chromium species		
IGNORE State symbols even if incorrect					
No TE on incorrect chromium species				\quad	
:---					

Question Number	Acceptable Answer	Reject	Mark

Question Number	Acceptable Answer	Reject	Mark
17(d)(iii)	Colourless and Cr^{6+} has no (3)d electrons ALLOW Colourless and (3)d subshell /orbitals empty /(3)d ${ }^{0}$	White (3)d orbital is empty no (3)d orbitals / no (3)d subshell	(1)
IGNORE No d-d transitions No d-d splitting			

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 7 (e) (i) ~}$	Marks are standalone	(1)	
Starch (solution) Blue-black / blue / black and to colourless / green IGNORE clear	(1)	yellow	

Question Number	Acceptable Answer	Reject	Mark
17(e)(ii)	M1 $\begin{align*} \mathrm{mol} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} & =10 \times 0.0495 \times 10^{-3} \\ & =4.95 \times 10^{-4} / 0.000495 \tag{1} \end{align*}$ M2 $\begin{align*} & \mathrm{mol}_{2}=3 \times \mathrm{mol} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \\ &= 3 \times 4.95 \times 10^{-4}=1.485 \times 10^{-3} \\ & \quad / 0.001485 \tag{1} \end{align*}$ M3 $\begin{align*} \mathrm{mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} & =2 \times \mathrm{mol} \mathrm{I}_{2} \\ & =2 \times 1.485 \times 10^{-3} \\ & =2.97 \times 10^{-3} / 0.00297 \tag{1} \end{align*}$ M4 concentration of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ $\begin{align*} & =1000 \times 2.97 \times 10^{-3} / 19.50 \\ & =0.1523 \mathrm{~mol} \mathrm{dm}^{-3} \tag{1} \end{align*}$ Ignore SF except 1 SF ALLOW TE at each stage Do not penalise correct intermediate rounding to 2 SF Correct answer with some / no working scores (4)	incorrect or missing units	(4)

(Total for Question 17 = 27 marks)
Some Common Incorrect Answers

Error	Final Answer	Mark $/ 4$
$\mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}=\mathrm{mol} \mathrm{I}_{2} / 2$	$0.03808 / 3.808 \times 10^{-2}$	3
$\mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}=\mathrm{mol} \mathrm{I}_{2}$	$0.07615 / 7.615 \times 10^{-2}$	3
$\mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}=\mathrm{mol} \mathrm{I}_{2} \times 2 / 3$	$0.05077 / 5.077 \times 10^{-2}$	3
$\mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}=\mathrm{mol} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \times 2$	$0.05077 / 5.077 \times 10^{-2}$	3

Question Number	Acceptable Answer	Reject	Mark
18(a)	Step 1 Add bromine ALLOW Chlorine Intermediate is 1,2-dibromoethane OR $\mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br} /$ displayed / skeletal formula OR 1,2-dichloroethane OR $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl} /$ displayed / skeletal formula IGNORE $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2} / \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ ALLOW feasible alternatives for Step1 eg acidic/alkaline KMnO_{4} and forms $\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}$ and using $\mathrm{P} / \mathrm{I}_{2}$ 1,2-diiodoethane Step 2 TE on any halogenoalkane from Step 1 Ammonia ((gas)) ALLOW Conc $\mathrm{NH}_{3}(\mathrm{aq})$ Dissolved in ethanol / alcohol (and heat) OR heat in a sealed tube / heat under pressure (add alkali / NaOH / KOH) If $\mathrm{NH}_{3}(\mathrm{aq})$ used M4 may be scored	$\mathrm{Br}_{2}(\mathrm{aq}) / \mathrm{Br}$ UV light Additional reagents	(4)

Question Number	Acceptable Answer	Reject	Mark
18(c)(i)	 OR displayed / structural formulae ALLOW Two or three 'en' molecules attached without showing octahedral shape provided nitrogens correctly bonded to copper IGNORE Omission of water Omission of square brackets Omission of charge / incorrect charge		(1)

Question Number	Acceptable Answer	Reject	Mark
18(c)(ii)	The number of particles / molecules / moles increases	Ammonia is released as a gas	(2)
	Do not penalise the use of specific numbers showing an increase, even if incorrect	IGNORE Just 'more product'	system is positive / increases (with no / negligible change in $\Delta S_{\text {surroundings so the }}$ reaction is favoured) ALLOW $\Delta S_{\text {total }} /$ entropy increases IGNORE Disorder increases References to stability constants

Question Number	Acceptable Answer	Reject	Mark
18(d)(i)	Ethanoyl chloride / $\mathrm{CH}_{3} \mathrm{COCl}$ OR Ethanoic anhydride / ($\left.\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ OR Displayed / skeletal formula ALLOW Acetic anhydride Acetic acid anhydride	$\mathrm{CH}_{3} \mathrm{CICO}$ Ethanoic acid / $\mathrm{CH}_{3} \mathrm{COOH}$ Additional reagents	(1)

Question Number	Acceptable Answer	Reject	Mark	
18(d)(ii)	The (four) protons on the central carbon chain are equivalent The (twelve) protons on the four methyl groups are equivalent Two peaks (because there are two proton environments) and The relative peak areas are $4: 12 / 1: 3$ Clearly labelled diagram scores M1 and M2 eg		(3)	

Question Number	Acceptable Answer	Reject	Mark
19(b)(i)	$m / e=77\left(\right.$ is $\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}$) so phenyl group/ $\mathrm{C}_{6} \mathrm{H}_{5}$ present ALLOW \mathbf{M} is an arene / aromatic / contains benzene (ring) Effervescence / reaction with NaHCO_{3} is typical of an acid so carboxylic acid/COOH present Decolourisation of reaction with $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$indicates a carbon-carbon double bond / C=C / alkene (1) Three groups correctly identified with no explanation scores (1)	phenol $\begin{equation*} \mathrm{C}_{6} \mathrm{H}_{6} \tag{1} \end{equation*}$	(3)

| Question
 Number | Acceptable Answer | Reject | Mark |
| :--- | :---: | :---: | :---: | :---: |
| 19(b)(ii) | (3) | | |

(Total for Question 19 = 10 marks)
Total for Section B=51 marks

Section C

Question Number	Acceptable Answer	Reject	Mark
20(a)	In (a) and (b) award marks for correct intermediates even if prepared incorrectly and correct reagents used with correct functional groups even if the molecule is wrong. Penalise omission of conditions once only in (a) Step 1 KCN / NaCN in ethanol / alcohol (reflux/heat) To form butanenitrile / $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CN}$ Step 2 Reflux with sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$ OR Reflux with NaOH and followed by addition of sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$ ALLOW Any strong acid / HCl for $\mathrm{H}_{2} \mathrm{SO}_{4}$ Heat / boil for reflux IGNORE Concentration of acid To form butanoic acid / $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$ Step 3 Lithium tetrahydridoaluminate(III) / lithium aluminium hydride / LiAlH_{4} in (dry) ether / ethoxyethane (under reflux) (followed by dilute strong acid) ALLOW Lithal in (dry) ether IGNORE Name or formula of butan-1-ol, even if incorrect	HCN	(5)

Question Number	Acceptable Answer	Reject	Mark
20(b)	Step 1 $\mathrm{KOH} / \mathrm{NaOH}$ in ethanol / alcohol / alcoholic (reflux) To form but-1-ene $/ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2}$ / skeletal / displayed formula IGNORE butene If name and formula are given, both must be correct Step 2 (depends on an alkene as the organic reactant) Add hydrogen bromide / HBr / hydrobromic acid / $\mathrm{NaBr} \& \mathrm{H}_{2} \mathrm{SO}_{4}$	Aqueous ethanol but-2-ene	(3)

Question Number	Acceptable Answer	Reject	Mark
20(c)(i)	These marks are standalone Sodium nitrite /sodium nitrate(III) / NaNO_{2} and hydrochloric acid / $\mathrm{HCl}((\mathrm{aq}))$ OR Potassium nitrite / KNO_{2} and $\mathrm{HCl}((\mathrm{aq}))$ OR Sulfuric acid (for hydrochloric acid) ALLOW Nitrous acid / $\mathrm{HNO}_{2} / \mathrm{HONO}$ IGNORE Concentration of acid hydrochloric acid / sulfuric acid with nitrous acid $0-10^{\circ} \mathrm{C} /$ ice(-water) bath ALLOW $\angle 10^{\circ} \mathrm{C} / \angle 5^{\circ} \mathrm{C}$	sodium nitrate	(2)

| Question
 Number | Acceptable Answer | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 20(c)(ii) | Left-hand curly arrow
 ALLOW
 Left-hand curly arrow going to the positive charge
 Right-hand curly arrow and lone pair
 ALLOW any type of connecting arrow or none
 Penalise half-arrows once only
 IGNORE any additional lone pairs
 COMMENT
 Penalise additional curly arrows once only | (1) | |

| Question
 Number | Acceptable Answer | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 0 (c) (\text { iii) }}$ | | (2) | |
| | OR
 $1,2 / 1,3$ structures
 Electrophilic substitution
 ALLOW
 Electrophilic coupling | (1) | |

Question Number	Acceptable Answer	Reject	Mark
20(d)(i)	(nucleophilic substitution of groups attached directly to a benzene ring is normally very difficult because) High electron density of the ring repels nucleophiles OR benzene ring sterically hinders the approach of nucleophiles	(2)	
	ALLOW pi / delocalised electrons repel nucleophiles OR Nucleophilic attack is difficult because of the high electron density of the ring (benzenediazonium ions readily undergo nucleophilic substitution because) Nitrogen is a very good leaving group ALLOW Nitrogen is a gas so the entropy change (of the system) is (very) positive OR nitrogen gas is very stable OR N2 electron density on the benzene ring IGNORE References just to the positive charge on the nitrogen	(1)	

Question Number	Acceptable Answer	Reject	Mark
20(d)(ii)	The (main) oxidation states of copper are readily interchanged ALLOW (Copper(I) ions) are (easily) changed into copper(II) ions and copper OR (Copper(I) ions) are (easily) oxidised and reduced OR Copper has variable oxidation states / variable valency	(1)	
IGNORE Copper is a transition element / metal References to partially filled 3(d) orbitals / subshell References to surface catalysis COMMENT ALLOW Copper(I) / Cu/ It / they have variable oxidation states			

| Question
 Number | Acceptable Answer | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 20(d)(iii) | Mark independently | (2) | |

(Total for Question 20 = 19 marks)
(Total for Section C = 19 marks)
Total for PAPER = 90 Marks

