

Mark Scheme (Results)

Summer 2019

Pearson International Advanced Level In Chemistry (WCH05) Paper 01General Principles of Chemistry II - Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code WCH05_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each guestion
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Answer	Mark
1	The only correct answer is C	(1)
	A is not correct because Al has an oxidation number of +3	
	B is not correct because Cr has an oxidation number of +3	
	D is not correct because V has an oxidation number of +4	

Question Number	Answer	Mark
2	The only correct answer is C	(1)
	A is not correct because this is the number of moles of iodate(V) ions needed to react with 1 mol of hydrogensulfite ions	
	B is not correct because the reaction is not 1:1	
	D is not correct because this is the number of moles of hydrogensulfite ions needed to react with 2 mol of iodate(V) ions (giving an equation with integer coefficients).	

Question Number	Answer	Mark
3(a)	The only correct answer is A	(1)
	B is not correct because manganese would react to form a cell system with Mn ²⁺	
	C is not correct because Mn²⁺is the reducing agent in the system	
	D is not correct because Mn ²⁺ is the reducing agent in the system and manganese would react to form a cell system with Mn ²⁺	

Question Number	Answer	Mark
3(b)	The only correct answer is D	(1)
	A is not correct because all the substances in an electrode system must be present in a half-cell	
	B is not correct because all the substances in an electrode system must be present in a half-cell	
	C is not correct because all the substances in an electrode system must be present in a half-cell	

Question Number	Answer	Mark
4	The only correct answer is D	(1)
	A is not correct because E_{cell}^{Θ} is proportional to neither ΔS_{system} nor K	
	B is not correct because E_{cell}^{e} is proportional to lnK but not to ΔS_{system}	
	\boldsymbol{c} is not correct because $E_{cell}{}^o$ is proportional to ΔS_{total} but not to K	

Question Number	Answer	Mark
5	The only correct answer is A	(1)
	B is not correct because oxidation always occurs at the anode	
	C is not correct because ethanol is oxidised in this cell	
	D is not correct because ethanol is oxidised in this cell	

Question Number	Answer	Mark
6	The only correct answer is A	(1)
	B is not correct because manganese in the +4 oxidation state will have partially filled d orbitals	
	C is not correct because iron in the +4 oxidation state will have partially filled d orbitals	
	D is not correct because copper in the +4 oxidation state will have partially filled d orbitals	

Question Number	Answer	Mark
7	The only correct answer is B	(1)
	A is not correct because oxygen is not a reducing agent and sulfur dioxide is not an oxidising agent	
	C is not correct because the highest stable oxidation number of vanadium is +5	
	D is not correct because oxygen is not a reducing agent and sulfur dioxide is not an oxidising agent and because the highest stable oxidation number of vanadium is +5	

Question Number	Answer	Mark
8	The only correct answer is B	(1)
	A is not correct because this shows benzene at a higher energy level than cyclohexa-1,3,5-triene and at a lower energy level than cyclohexane.	
	C is not correct because this shows cyclohexane at the highest energy level instead of the lowest.	
	D is not correct because this shows benzene at a higher energy level than cyclohexa-1,3,5-triene.	

Question Number	Answer	Mark
9	The only correct answer is C	(1)
	A is not correct because this compound does not form an ionic compound with sodium hydroxide or react with ethanol	
	B is not correct because this compound does not decolorise bromine water	
	D is not correct because this compound does not react with ethanol	

Question Number	Answer	Mark
10	The only correct answer is C	(1)
	A is not correct because ethanal cannot form the required electrophile	
	B is not correct because ethanoic acid cannot form the required electrophile	
	D is not correct because propanone cannot form the required electrophile	

Question Number	Answer	Mark
11	The only correct answer is B	(1)
	A is not correct because alkenes form poly(alkenes) from single monomers	
	C is not correct because F reacts with G to form a polyamide	
	D is not correct because F reacts with H to form a polyester	

Question Number	Answer	Mark
12(a)	The only correct answer is C	(1)
	A is not correct because the nitrogen atom furthest left in the structure is in an amine group	
	B is not correct because the other two nitrogen atoms are part of amide groups	
	D is not correct because the hydroxyl group attached directly to the benzene ring is phenolic	

Question Number	Answer	Mark
12(b)	The only correct answer is A	(1)
	B is not correct because the phenolic OH group is very much less basic than the amine group	
	C is not correct because the phenolic OH group will not lose a proton in acidic conditions	
	D is not correct because the carboxylic acid group is very much less basic than the amine group	

Question Number	Answer	Mark
13(a)	The only correct answer is C	(1)
	A is not correct because covalent bonds are not broken when amino acids melt	
	B is not correct because hydrogen bonds cannot form between zwitterions	
	D is not correct because London forces are much weaker than ionic bonds	

Question Number	Answer	Mark
13(b)	The only correct answer is D	(1)
	A is not correct because only alanine has a chiral carbon and exists as optical isomers	
	B is not correct because alanine has a chiral carbon and exists as optical isomers	
	C is not correct because glycine does not have a chiral carbon and does not exist as optical isomers	

Question Number	Answer	Mark
13(c)	The only correct answer is D	(1)
	A is not correct because neither structure has a peptide (CONH) link	
	B is not correct because the right-hand structure does not have a peptide (CONH) link	
	C is not correct because the left-hand structure does not have a peptide (CONH) link	

Question Number	Answer	Mark
14	The only correct answer is B	(1)
	A is not correct because sulfuric acid is not involved in the hydrolysis so does not act as a catalyst	
	C is not correct because the sodium hydroxide effects the hydrolysis	
	D is not correct because this is not the function of the sulfuric acid	

Question Number	Answer			
15	The only correct answer is A	(1)		
	B is not correct because this is the number of protons in each environment, not the splitting pattern			
	C is not correct because this considers the splitting of the C2 protons to be due only to the C1 protons			
	D is not correct because this considers the splitting of the C2 protons to be due only to the C1 protons and additionally shows the hydroxy proton peak being split			

Question Number	Answer			
16	The only correct answer is D	(1)		
	A is not correct because it will not form a white solid with dilute sulfuric acid.			
	B is not correct because it will not form a pale yellow precipitate when warmed with iodine and sodium hydroxide			
	C is not correct because it will not form a pale yellow precipitate when warmed with iodine and sodium hydroxide or a white solid with sulfuric acid.			

Total for Section A = 20 marks

Section B

Question Number	Acceptable Answer		Reject	Mark
17(a)(i)	$E^{\circ}_{cell} = +0.40 - (-0.74) = (+)1.14 \text{ (V)}$ No TE on incorrect half equations $4\text{Cr} + 3\text{O}_2 + 6\text{H}_2\text{O} \rightleftharpoons 4\text{Cr}^{3+} + 12\text{OH}^-$ OR $4\text{Cr} + 3\text{O}_2 + 6\text{H}_2\text{O} \rightleftharpoons 4\text{Cr}(\text{OH})_3$ ALLOW Multiples \rightarrow in place of \rightleftharpoons Species and equation in correct direction Balancing ALLOW TE on incorrect half equations from the tale $= 4\text{Cr}^{2+} + \text{O}_2 + 2\text{H}_2\text{O} \rightleftharpoons 4\text{Cr}^{3+} + 4\text{OH}^-$ IGNORE state symbols even if incorrect COMMENT Correct $= 6\text{Cell}$ value may be credited in (a)(iii)	ble (1)	-1.14 (V) uncancelled electrons	(3)

Question Number	Acceptable Answer	Reject	Mark
17(a)(ii)	TE on any positive value in 17(a)(i) The positive E°_{cell} value indicates that the corrosion of chromium is (thermodynamically) feasible		(2)
	ALLOW spontaneous for feasible E°_{cell} value indicates chromium and oxygen should react / chromium corrodes (1) TE for M1 only on any negative value in 17(a)(i)		
	So the corrosion is kinetically unfavourable / has a high activation energy / slow OR chromium forms a stable / unreactive oxide coating (that protects the metal from corrosion) ALLOW hydroxide for oxide (1)	Just 'needs high energy' Any reference to sacrificial protection	
	hydroxide for oxide (1)		

Question Number	Acceptable Answer		Reject	Mark
17(b)(i)	Correct equation with E^{Θ}_{cell} value scores (2)			(2)
	Route 1			
	Zinc / Zn	(1)		
	IGNORE Acids / H ⁺ Ionic half-equation		Other additional reagents	
	$(Zn(s) + 2Cr^{3+}(aq) \approx 2Cr^{2+}(aq) + Zn^{2+}(aq))$			
	$E^{\circ}_{\text{cell}} [= -0.41 - (-0.76)] = (+)0.35 \text{ (V)}$	(1)		
	Route 2			
	Chromium / Cr	(1)		
	$E^{\circ}_{\text{cell}} = -0.41 - (-0.74) = (+)0.33 \text{ (V)}$	(1)		

Question Number	Acceptable Answer	Reject	Mark
17(b)(ii)	Standalone marks Chromium(II) (is readily oxidised back to chromium(III)) (1)	Oxidation to any other oxidation state	(2)
	oxidised by oxygen (in the air) ALLOW by air (1) IGNORE just 'reacts with oxygen (in the air)'		

Question Number	Acceptable Answer	Reject	Mark
17(b)(iii)	From green to blue		(1)

ALLOW violet to blue	
IGNORE modifiers (eg pale)	

Question Number	Acceptable Answer	Reject	Mark
17(b)(iv)	M1 (energy gap) There is a different energy gap between the (3)d orbitals / in the (3)d subshell ALLOW different d-d splitting (3)d orbitals split differently (1)	(3)d orbital	(3)
	M2 (explanation of energy gap) Because of the (different) charge / oxidation state / radius / size / charge density / electronic structure / numbers of (d)electrons of the ions (1)	Just different ions/ligands	
	M3 (effect of energy gap) So different frequencies / wavelengths of (visible) light / radiation / energy are absorbed / reflected / transmitted OR Photons of different energy	emitted	
	are absorbed / reflected / transmitted (1) IGNORE Colour for (visible) light / radiation / energy General explanations of the colour of transition metal complexes even if incorrect	emitted	

Question Number	Acceptable Answer	Reject	Mark
17(c)(i)	In 17(c)(i) and (ii) two correct formulae scores (1) in (c)(i)		(1)

Ignore omission of square brackets	
[CrCl ₄] ⁻ and tetrahedral	

Question Number	Acceptable Answer	Reject	Mark
17(c)(ii)	$[Cr(NH_3)_6]^{3+}$ / $[Cr(NH_3)_4(H_2O)_2]^{3+}$ and	[Cr(NH ₃) ₄] ³⁺	(1)
	octahedral	square planar	

Question Number	Acceptable Answer	Reject	Mark
Number 17(d)(i)	$2CrO_4^{2^-} + 2H^+ \rightarrow Cr_2O_7^{2^-} + H_2O$ OR \rightleftharpoons in place of \rightarrow ALLOW Multiples Formulae of both chromium species (in any equation) (1) Correct balanced equation (1)	Additional chromium species	(2)
	IGNORE State symbols even if incorrect No TE on incorrect chromium species		

Question	Acceptable Answer	Reject	Mark
Number			

17(d)(ii)	Cr ⁶⁺ /chromium(VI) ion (small and) highly charged OR Cr ⁶⁺ /chromium(VI) ion has (very) high charge density	(1)	(3)
	Route 1		
	(So Cr ⁶⁺ is very) polarising	(1)	
	H-O / OH bonds broken / water (ligands) deprotonated	(1)	
	IGNORE H–O bonds weakened / polarised		
	Route 2		
	Ionising six / so many electrons requires a larg	ge (1)	
	Not recovered from hydration energy / enthal	ру	
	lattice energy for hydration energy	(1)	
	If no other mark is scored Cr ⁶⁺ is is too small to coordinate six (water) ligands scores (1)	0	

Question Number	Acceptable Answer	Reject	Mark
17(d)(iii)	Colourless and Cr ⁶⁺ has no (3)d electrons ALLOW Colourless and (3)d subshell /orbitals empty /(3)d ⁰	White (3)d orbital is empty no (3)d orbitals / no (3)d subshell	(1)
	IGNORE No d-d transitions No d-d splitting		

Question Number	Acceptable Answer	Reject	Mark
17(e)(i)	Marks are standalone Starch (solution) (1) Blue-black / blue / black and to colourless / green (1) IGNORE clear	yellow	(2)

Question Number	Acceptable Answer		Reject	Mark
17(e)(ii)	M1 mol $Cr_2O_7^{2^-} = 10 \times 0.0495 \times 10^{-3}$ = 4.95 x 10^{-4} /0.000495	(1)		(4)
	M2 mol $I_2 = 3 \times \text{mol Cr}_2 O_7^{2^-}$ = $3 \times 4.95 \times 10^{-4} = 1.485 \times 10^{-3}$ / 0.001485	(1)		
	M3 mol $S_2O_3^{2^-} = 2 \times \text{mol } I_2$ = 2 x 1.485 x 10 ⁻³	(.,		
	= 2.97 x 10 ⁻³ /0.00297	(1)		
	M4 concentration of $S_2O_3^{2-}$ = 1000 x 2.97 x 10 ⁻³ / 19.50 = 0.1523 mol dm ⁻³	(1)	incorrect or missing units	
	Ignore SF except 1 SF			
	ALLOW			
	TE at each stage			
	Do not penalise correct intermediate rounding to 2 SF			
	Correct answer with some / no working scores (4)			

(Total for Question 17 = 27 marks)

Some Common Incorrect Answers

Error	Final Answer	Mark /4
$mol S_2O_3^{2-} = mol I_2/2$	0.03808 / 3.808 x 10 ⁻²	3
$mol S_2O_3^{2-} = mol I_2$	0.07615 / 7.615 x 10 ⁻²	3
$mol S_2O_3^{2-} = mol I_2 \times 2/3$	0.05077 / 5.077 x 10 ⁻²	3
$mol S_2O_3^{2-} = mol Cr_2O_7^{2-} \times 2$	0.05077 / 5.077 x 10 ⁻²	3

Question Number	Acceptable Answer		Reject	Mark
18(a)	Step 1			(4)
	Add bromine		Br₂(aq) / Br UV light	
	ALLOW		Additional	
	Chlorine	(1)	reagents	
	Intermediate is 1,2-dibromoethane OR			
	CH ₂ BrCH ₂ Br / displayed / skeletal formula OR			
	1,2-dichloroethane OR			
	CH ₂ ClCH ₂ Cl / displayed / skeletal formula	(1)		
	IGNORE C ₂ H ₄ Br ₂ / C ₂ H ₄ Cl ₂			
	ALLOW feasible alternatives for Step1 eg acidic/alkaline KMnO ₄ and			
	forms CH ₂ OHCH ₂ OH and using P / I ₂	(1)		
	1,2-diiodoethane	(1)		
	Step 2			
	TE on any halogenoalkane from Step 1			
	Ammonia ((gas))			
	ALLOW			
	Conc NH₃(aq)	(1)		
	Dissolved in ethanol / alcohol (and heat) OR			
	heat in a sealed tube / heat under pressure (add alkali / NaOH / KOH)	(1)		
	If NH₃(aq) used M4 may be scored			
			Reflux	

Question Number	Acceptable Answer	Reject	Mark
18(b)	M1 (type of reaction)		(3)
	Neutralisation / acid-base reaction (1)	(forming salt and) water	
	M2 (explanation of basic character)		
	Ethane-1,2-diamine is basic because of the lone pairs (of electrons) on the nitrogen atoms		
	ALLOW Ethane-1,2-diamine is basic because of (the basicity of) the amine group(s) OR amine group is basic OR		
	amine group / nitrogen is protonated (1)		
	M3 (formula)		
	$NH_3^+ NO_3^ H_2C$ — CH_2 $NO_3^- + NH_3$ ALLOW	Covalent bond to nitrate	
	Any formula showing the salt including just one NH ₂ protonated Omission of charges (1)		

Question Number	Acceptable Answer	Reject	Mark
18(c)(i)	OR displayed / structural formulae ALLOW Two or three 'en' molecules attached without showing octahedral shape provided nitrogens correctly bonded to copper IGNORE Omission of water Omission of square brackets Omission of charge / incorrect charge		(1)

Question Number	Acceptable Answer		Reject	Mark
18(c)(ii)	The number of particles / molecules / moles increases	(1)	Ammonia is released as a gas	(2)
	Do not penalise the use of specific numbers showing an increase, even if incorrect		843	
	IGNORE Just 'more product'			
	ΔS_{system} is positive / increases (with no / negligible change in $\Delta S_{\text{surroundings}}$ so the reaction is favoured)			
	ALLOW ΔS_{total} / entropy increases	(1)		
	IGNORE Disorder increases References to stability constants			

Question Number	Acceptable Answer	Reject	Mark
18(d)(i)	Ethanoyl chloride / CH₃COCl OR	CH₃ClCO	(1)
	Ethanoic anhydride / (CH₃CO)₂O OR Displayed / skeletal formula	Ethanoic acid / CH₃COOH	
	ALLOW Acetic anhydride Acetic acid anhydride	Additional reagents	

Question Number	Acceptable Answer	Reject	Mark
18(d)(ii)	The (four) protons on the central carbon chain are equivalent (1)		(3)
	The (twelve) protons on the four methyl groups are equivalent (1)		
	Two peaks (because there are two proton environments) and		
	The relative peak areas are 4:12/1:3 (1)		
	Clearly labelled diagram scores M1 and M2 eg		
	0 AO N B		
	No TE on incorrect numbers of equivalent protons IGNORE Splitting patterns, even if incorrect		

(Total for Question 18 = 14 marks)

Question Number	Acceptable Answer				Reject	Mark	
19(a)	Route 1						(4)
		Carbon	Hydrogen	Oxygen			
	%	72.97	5.41	21.62			
	mol	72.97/12	5.41/1	21.62/16			
		= 6.081	= 5.41	= 1.35	(1)		
	÷1.35	4.50	4.01	1	(1)		
	Ratio	9	8	2			
	(n/e of r M _r = 148 and molecula Route2	ar formula		2	(1)		
		Caulana	11	10			
	0/	Carbon	Hydrogen	Oxygen			
	%	72.97	5.41	21.62			
	mass	0.7297 x 148	0.0541 x 148	0.2162 x	(1)		
	/g	= 108.0	= 8.007	= 32.00	(1)		
	mol	108/12	8.007/1	32/16	(1)		
		9	= 8	= 2	(')		
	Correct (/ $\mathbf{M} = C_9 H_8 O_9$		(1)		
		or empirica ey must be	al / molecula g mol ⁻¹	r formula a	ire		

Question Number	Acceptable Answer	Reject	Mark
19(b)(i)	$m / e = 77$ (is $C_6H_5^+$) so phenyl group/ C_6H_5 present ALLOW	phenol	(3)
	M is an arene / aromatic / contains benzene (ring) (1) Effervescence / reaction with NaHCO ₃ is typical of an acid so carboxylic acid/COOH present (1)	C ₆ H ₆	
	Decolourisation of reaction with KMnO ₄ / H ⁺ indicates a carbon-carbon double bond / C=C / alkene (1)		
	Three groups correctly identified with no explanation scores (1)		

Question Number	Acceptable Answer	Reject	Mark
19(b)(ii)	$\begin{array}{c} H \\ C = C \\ O \\ H \end{array} $ $\begin{array}{c} C \\ O \\ O \\ O \\ O \\ O \\ O \end{array} $ $\begin{array}{c} (1) \\ C = C \\ O \\$		(3)
	O (1)		
	No TE on incorrect deductions from mass spectrum or reactions		
	Three di-substituted benzene rings scores (2) Two di-substituted benzene rings scores (1)		
	ALLOW Structural, displayed, skeletal formulae or any correct combination of these		

(Total for Question 19 = 10 marks) Total for Section B = 51 marks

Question Number	Acceptable Answer	Reject	Mark
20(a)	In (a) and (b) award marks for correct intermediates even if prepared incorrectly and correct reagents used with correct functional groups even if the molecule is wrong.		(5)
	Penalise omission of conditions once only in (a)		
	Step 1 KCN / NaCN in ethanol / alcohol (reflux/heat) (1)	HCN	
	To form butanenitrile / C ₃ H ₇ CN (1)		
	Step 2 Reflux with sulfuric acid / H ₂ SO ₄ OR Reflux with NaOH and followed by addition of sulfuric acid / H ₂ SO ₄		
	ALLOW Any strong acid / HCl for H ₂ SO ₄ Heat / boil for reflux (1)		
	IGNORE Concentration of acid		
	To form butanoic acid / C ₃ H ₇ COOH (1)		
	Step 3 Lithium tetrahydridoaluminate(III) / lithium aluminium hydride / LiAlH ₄ in (dry) ether / ethoxyethane (under reflux) (followed by dilute strong acid)		
	ALLOW Lithal in (dry) ether (1)		
	IGNORE Name or formula of butan-1-ol, even if incorrect		

Question Number	Acceptable Answer		Reject	Mark
20(b)	Step 1 KOH/ NaOH in ethanol / alcohol / alcoholic (reflux)	(1)	Aqueous ethanol	(3)
	To form but-1-ene /CH ₃ CH ₂ CHCH ₂ / skeletal / displayed formula IGNORE butene If name and formula are given, both must be correct	(1)	but-2-ene	
	Step 2 (depends on an alkene as the organic reactant) Add hydrogen bromide / HBr / hydrobromic acid / NaBr & H ₂ SO ₄	(1)		

Question Number	Acceptable Answer	Reject	Mark
20(c)(i)	These marks are standalone		(2)
	Sodium nitrite /sodium nitrate(III) / NaNO ₂ and hydrochloric acid / HCl((aq)) OR Potassium nitrite / KNO ₂ and HCl((aq)) OR Sulfuric acid (for hydrochloric acid) ALLOW Nitrous acid / HNO ₂ / HONO (1)	sodium nitrate	
	IGNORE Concentration of acid hydrochloric acid / sulfuric acid with nitrous acid 0—10°C / ice(-water) bath ALLOW <10°C / <5°C (1)		

Question Number	Acceptable Answer	Reject	Mark
20(c)(ii)	**************************************		(2)
	Left-hand curly arrow ALLOW Left-hand curly arrow going to the positive charge (1)		
	Right-hand curly arrow and lone pair (1)		
	ALLOW any type of connecting arrow or none		
	Penalise half-arrows once only		
	IGNORE any additional lone pairs		
	COMMENT Penalise additional curly arrows once only		

Question Number	Acceptable Answer	Reject	Mark
20(c)(iii)			(2)
	N=N-()>OH		
	OR 1,2 / 1,3 structures (1)		
	Electrophilic substitution		
	ALLOW Electrophilic coupling (1)		

Question Number	Acceptable Answer	Reject	Mark
20(d)(i)	(nucleophilic substitution of groups attached directly to a benzene ring is normally very difficult because) High electron density of the ring repels nucleophiles OR benzene ring sterically hinders the approach of nucleophiles		(2)
	ALLOW pi / delocalised electrons repel nucleophiles OR Nucleophilic attack is difficult because of the high electron density of the ring (1)		
	(benzenediazonium ions readily undergo nucleophilic substitution because) Nitrogen is a very good leaving group ALLOW Nitrogen is a gas so the entropy change (of the system) is (very) positive OR nitrogen gas is very stable OR N ₂ ⁽⁺⁾ (group) is electron withdrawing and decreases the electron density on the benzene ring IGNORE References just to the positive charge on the nitrogen		

Question Number	Acceptable Answer	Reject	Mark
20(d)(ii)	The (main) oxidation states of copper are readily interchanged ALLOW (Copper(I) ions) are (easily) changed into copper(II) ions and copper OR (Copper(I) ions) are (easily) oxidised and reduced OR Copper has variable oxidation states / variable valency IGNORE Copper is a transition element / metal References to partially filled 3(d) orbitals / subshell References to surface catalysis COMMENT		(1)
	ALLOW Copper(I) / Cu ⁺ / It / they have variable oxidation states		

Question Number	Acceptable Answer	Reject	Mark
20(d)(iii)	Mark independently		(2)
	$N_2^+ + Cu^+ \longrightarrow N_2^+ + Cu^{2+}$		
	(1)		
	· + I - + Cu ²⁺		
	ALLOW Balanced equations with (e.g) 2I ⁻ on LHS and Cul on RHS (1)		
	IGNORE Curly arrows even if incorrect.		

(Total for Question 20 = 19 marks) (Total for Section C = 19 marks) Total for PAPER = 90 Marks

https://t.me/joinchat/wwc3WbVZ6MtkYWU0	www.igexams.com
Pearson Education Limited. Registered company number 872828	
with its registered office at 80 Strand, London, WC2R 0RL, United Kingd	om