

Mark Scheme (Results)

Summer 2015

IAL Chemistry (WCH06/01)

PMT

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code IA041117* All the material in this publication is copyright © Pearson Education Ltd 2015

PMT

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	SO4 ²⁻	Sulfate HSO4 ⁻	1
	OR		
	SO ₄ ⁻²		

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	(Dilute) hydrochloric (acid)/ HCI(aq) / nitric (acid) / HNO ₃ (aq) ALLOW HCI / HNO ₃ Ignore concentrated/conc	Sulfuric acid H ⁺ / H ₃ O ⁺ Carboxylic acid Hydrogen chloride	1

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	Water and hydroxide can be in either order		1
	If name and formula are given, both must be correct		
	Copper (II) hydroxide / Cu(OH) ₂ / Cu(H ₂ O) ₄ (OH) ₂		
	ALLOW		
	$Cu(H_2O)_2(OH)_2$	Any other	
	IGNORE	numbers	
	Copper hydroxide		
	Square brackets in formula wherever they are		

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	Water and ammonia can be in either order		1
	If name and formula are given, both must be correct		
	[Cu(NH ₃) ₄] ²⁺	Any other numbers	
	OR	e.g. $[Cu(NH_3)_6]^{2+}$	
	[Cu(H ₂ O) ₂ (NH ₃) ₄] ²⁺		
	Charge must be included		
	Outer brackets not required		
	IGNORE order of ligands, but numbers must be correct		

Question Number	Acceptable Answers	Reject	Mark
1(c)	Cu(H ₂ O) ₆ ²⁺ OR	Cu ²⁺ Cu ²⁺ (aq)	1
	$Cu(H_2O)_4^{2+}$		
	IGNORE Square brackets wherever they are		

Question Number	Acceptable Answers	Reject	Mark
1(d)	CuSO ₄ / Cu ²⁺ SO ₄ ²⁻ If charges given both must be given correctly	CuSO ₄ .5H ₂ O	1

Question Number	Acceptable Answers	Reject	Mark
1(e)	Mark independently		2
	First mark		
	The (3)d sub-shell(s) / (3)d-orbital(s) cannot be split		
	OR		
	No d-d splitting		
	OR		
	No d-d transitions (1)		
	Second mark		
	No colour as no ligands present		
	ALLOW		
	No water (of crystallization) present OR Not hydrated / Anhydrous salt		
	IGNORE Use of copper rather than copper ions (1)		
	Reverse arguments involving the addition of water acceptable		

(Total for Question 1 = 8 marks)

Question Number	Acceptable Answers	Reject	Mark
2(a)	Na ⁺	Na	1
	OR	Any charge other than +1	
	Na ⁺¹		
	OR		
	Na ¹⁺		
	IGNORE sodium or sodium ion		

Question Number	Acceptable Answers		Reject	Mark
2(b)(i)	Measure pH/Use of alkaline buffe	er solution (1)		2
	and acidic buffer solution	(1)		
	ALLOW			
	Measure pH of a (alkaline) buffe	r solution (1)		
	with known pH	(1)		
	ALLOW			
	Use of acid /alkali / (de-ionized/ pure) water / specified neutral NaCI(aq))	solution (e.g.		
		(1)		
	of known pH	(1)	Neutral for	
	OR		pH=7	
	Several solutions of known pH Plot graph of meter reading agai pH (to give a calibration curve)	(1) nst (known) (1)		

Question Number	Acceptable Answers					Reject	Mark
2(b)(ii)	Universal / full range indicator (paper / solution) (1)						2
	Colour changes to (darl	k) gree	n / blue	9			
	IGNORE						
	Initial colour			(1)			
	Comment						
	ALLOW for 1 mark						
	Any named indicator fro in alkali	om list	below a	and its	s colour		
		p <i>K</i> _{in} (298 K)	acid	pH range	alkaline		
	 Statistic green Statistic green Stymol blue (acid) Statistic green 	0.8 1.0 1.7 3.5 3.7	yellow yellow red red	0.0-1.6	blue blue/green yellow yellow		
	Mathyl orange Bromophenol blue Congo red Bromocresol green Mathyl red	3.7 4.0 4.0 4.7 5.1	red yellow violet yellow	3.2-4.4 2.8-4.6 3.0-5.0 3.8-5.4 4.2-6.3	yellow blue red blue		
	Applitmin (litmus) Bromoeresol purple Eromothymol blue Pignol red Thymol blue (base)	6.3 7.0 7.9 8.9	ređ yellow yellow yellow	5.0-8.0 5.2-6.8 6.0-7.6 6.8 8.4 8.0-9.6	blue purple blue red		
	Faenolphthalein (in ethanol) Tsymolphthalein Aizarin yellow R	9.3 9.7 12.5	colourless colourless	8,2-10,0 8,3-10,6	red	1	

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii)	A pH meter because difficult to match colour of indicator to pH OR the colour of universal indicator covers a range of pH ALLOW pH meters measure to at least one decimal place (after calibration) OR	pH meter alone	1
	pH meter with any reasonable attempt at an explanation e.g. indicators cover a range pH meters give exact values	Any untrue statement about pH meters or indicators	

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	First mark - Observation Effervescence / bubbles (of gas) (1)	Incorrect observations e.g. Solid/precipitate forms	2
		Negates first mark	
	IGNORE Test for carbon dioxide Gas evolved (Solid) sodium carbonate dissolves Second mark - Explanation		
	because the sodium carbonate reacts with / neutralises acid (s) present (to form carbon dioxide)		
	ALLOW		
	carbon dioxide is formed (1)		

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	Ester		1
	OR		
	Methyl ester		
	IGNORE		
	compound (of carboxylic acid and alcohol)		

Question Number	Acceptable Answers		Reject	Mark
2(d)	S CH ₃ COOCH ₃	(1)		3
	R CH₃COOH	(1)		
	P $CH_3COO^{(-)}Na^{(+)}$	(1)	CH₃COO—Na	
	ALLOW displayed/skeletal formulae			
	ALLOW TE as below:			
	TE from 2(a)			
	TE for R and P based on their formula for S			
	TE for P based on their formula for R			
	Ignore names even if incorrec	ct		

(Total for Question 2 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark
3(a)	Sulfuric acid reacts very exothermically with water	nitric acid	1
	ALLOW		
	The reaction with acid is exothermic		
	OR		
	(Sulfuric) acid will shoot out of container		
	OR		
	The reaction of water with (sulphuric) acid is vigorous/splashes		
	OR		
	Prevent splashing of acid	Prevent splash alone	

Ques Num	Acceptable Answers	Reject	Mark
3(b)	(Pale/straw-coloured) yellow / brown / red-brown	Red/purple/blue/black/blue- black/orange	1

Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	(Freshly prepared) starch (solution)		1

Question Number	Acceptable Answers	Reject	Mark
3(c) (ii)	<pre>(If starch is added too early) starch iodine complex formed (doesn't re-dissolve) ALLOW Iodide for iodine ALLOW (Black) solid/precipitate / complex forms OR Insoluble compound forms</pre>		1

Question Number	Acceptable Answers	Reject	Mark
3(c)(iii)	From blue-black to colourless	to clear	1
	ALLOW		
	From blue / black/ dark blue/ deep blue to colourless		

Question Number	Acceptable Answers			Reject	Mark	
3(d)(i)	24.1(0)	23.8(0)	23.55	23.45 (cm ³)		1

Question Number	Acceptable Answers	Reject	Mark
3(d)(ii)	The third and fourth / 23.55 and 23.45 (cm ³)		1
	and		
	They are concordant		
	OR		
	Within ±0.2/0.1 (cm ³)		
	IGNORE Anomalous		

Question Number	Acceptable Answers	Reject	Mark
3(d)(iii)	23.5(0) (cm ³) ALLOW		1
	TE including second titre value, mean = 23.6(0) (cm ³)		

Question Number	Acceptable Answers	Reject	Mark
3(d)(iv)	Correct answer 74.6% / 75%		5
	OR 74.9% (TE from 23.60 average titre)		
	Ignore SF except 1SF		
	With no working (5)		
	Number of mol of thiosulfate = $\frac{23.50 \times 0.200}{1000}$ (1)		
	= 4.70 x 10 ⁻³ /0.00470 Second mark EITHER Number of mol of iodine		
	$= \frac{4.70 \times 10^{-3}}{2}$		
	$= 2.35 \times 10^{-3} / 0.00235$		
	Number of moles of copper ion		
	$= 2 \times 2.35 \times 10^{-3} $ (1)		
	$= 4.70 \text{ x } 10^{-3} / 0.00470 \text{ in } 10 \text{ cm}^3$		
	OR		
	From equations amount of iodine is half amount of thiosulfate and amount of copper is twice amount of iodine, so amount of copper equals amount of thiosulfate for this mark		
	Number of moles of copper in solid		

$= 10 \times 4.70 \times 10^{-3} = 4.70 \times 10^{-2}/0.0470$	(1)
Mass of copper in solid = $4.70 \times 10^{-2} \times 63.5$ (c	g)
= 2.9845	(1)
Percentage copper	
$= \frac{2.9845 \times 100}{4.00}$	
= 74.6125 = 74.6%	(1)
Using 23.60 by averaging titres 2,	3 and 4
4.72 x 10 ⁻³ /0.00472	(1)
2.36 x 10 ⁻³ 0.00236	
AND	
4.72 x 10 ⁻³ /0.00470	(1)
4.72 x 10 ⁻² /0.0470	(1)
2.9972	(1)
74.9%	(1)
Answers greater than 100% max 3	3

Question Number	Acceptable Answers	Reject	Mark
3(d)(v)	First Mark		2
	Uncertainty in titre value:		
	$\frac{2 \times 0.05}{23.55} \times 100 =$		
	(±)0.42/0.425/0.4246% (1)		
	Second Mark		
	Uncertainty in the mass measurement:		
	$\frac{2 \times 0.005 \times 100}{4.0} = (\pm)0.25\%$		
	OR		
	$\frac{1 \times 0.005 \times 100}{4.0} = (\pm)0.125\%$		
	so it would / would not be worth using a 3 dp balance (1)		
	Ignore SF including 1 SF		

(Total for Question 3 = 15 marks)

Question Number	Acceptable Answers	Reject	Mark
4(a)	Mass of bromine = 6.0×3.1 (1) (= 18.6 (g))		2
	Number of moles of bromine $ = \frac{6.0 \times 3.1}{2 \times 79.9} $ $ = 0.116(40) $ $ = 0.12 (1) $	<u>6.0x3.1</u> 1000	
	ALLOW Number of moles of bromine = $\frac{18.6}{2 \times 80}$ = 0.11625 = 0.12 Correct answer no working scores (2) IGNORE SF except 1 SF		

Question Number	Acceptable Answers	Reject	Mark
4(b)	Mark Independently		2
	2Fe + 3Br₂ → 2FeBr ₃		
	OR multiples (1)		
	$Br_2 + FeBr_3 \rightarrow Br^{\delta_+}Br^{\delta}FeBr_3$ Allow any attachment between the centre bromine atom and the iron and / or the other bromine atom. e.g. $Br^{\delta_+} - Br^{\delta}$.FeBr ₃		
	OR		
	$Br_2 + FeBr_3 \rightarrow Br^+ + FeBr_4^-$ (1)		
	Ignore states even if incorrect	→ Br ⁻ + FeBr ₄ ⁺	

Question Number	Acceptable Answers	Reject	Mark
4(c)	To neutralize / react with HBr (formed)	To neutralize (the solution)	1
	ALLOW To neutralize / react with acid		
	OR		
	To remove / react with bromine		

Question Number	Acceptable Answers	Reject	Mark
4(d)	ethoxyethane		2
	Separating funnel which must have narrower neck than the container (capable of taking a stopper) and a tap(1)Upper layer ethoxyethane(1)	Burette Filter funnel	

Question Number	Acceptable Answers	Reject	Mark
4(e)	(Concentrated) nitric acid/ HNO ₃ and		1
	(concentrated) sulfuric acid/ H ₂ SO ₄	Dilute sulfuric acid Any additional chemicals like Ammonia/NH ₃ Bromine/Br ₂ Sodium hydroxide/NaOH	

Question Number	Acceptable Answers	Reject	Mark
4(f)	(0.75 x 0.70 x 0.70 x100 =) 36.75 / 36.8 / 37 (%) Correct answer with no working	Any other answers e.g. 36.7 / 37.0 / 40	1

Question Number	Acceptable Answers	Reject	Mark
4(g)(i)	(While rotating the tube) heat one end of the tube in a Bunsen flame (until the glass starts to melt)		1
	ALLOW		
	Heat in a flame		
	OR		
	Heat (one end of the) tube		

Question Number	Acceptable Answers	Reject	Mark
4(g)(ii)	By gently tapping or dropping the tube / rubbing the open end with a milled coin	Heat	1
	ALLOW		
	Hit / flick tube with finger		
	OR		
	Use (very small) dry crystals		
	IGNORE Shaking / use of wire / sticks / pins / needles		

Question Number	Acceptable Answers	Reject	Mark
4(g)(iii)	Any two from		2
	High boiling temperature/ point (compared with sample melting temperature) OR not volatile	High melting temperature	
	Does not decompose / oxidize (at high temperature)	Just 'does not react with the crystals'	
	Mobile / non-viscous / non-sticky		
	IGNORE		
	Any reference to thermal conductivity and heat capacity		
	ALLOW Clear liquid (ignore colourless)		
	High ignition temperature/non- (in)flammable		
	Non-toxic		
	IGNORE		
	Unreactive alone / safety aspects		

Question Number	Acceptable Answers	Reject	Mark
4(g)(iv)	Before recrystallization		2
	185 – 201°C	Single temperature	
	A range of at least 5°C	temperature	
	ALLOW 180 - 205 °C		
	A range of at least 5°C (1)		
	After recrystallization		
	199 – 201°C		
	ALLOW 197 - 203°C	Single temperature	
	A range of no more than 4°C (1)		

(Total for Question 4 = 15 marks)

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom