#### **Pure Mathematics P4 Mark scheme**

| Ques        | tion Scheme                                                                                                                                                                                 | Marks  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1           | $\left\{\frac{1}{(2+5x)^3} =\right\} (2+5x)^{-3}$                                                                                                                                           | M1     |
|             | $= \underline{(2)^{-3}} \left( 1 + \frac{5x}{2} \right)^{-3} = \frac{1}{\underline{8}} \left( 1 + \frac{5x}{2} \right)^{-3}$                                                                | B1     |
|             | $=\left\{\frac{1}{8}\right\}\left[1+(-3)(kx)+\frac{(-3)(-4)}{2!}(kx)^{2}+\frac{(-3)(-4)(-5)}{3!}(kx)^{3}+\dots\right]$                                                                      | M1 A1  |
|             | $= \left\{\frac{1}{8}\right\} \left[1 + (-3)\left(\frac{5x}{2}\right) + \frac{(-3)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-4)(-5)}{3!}\left(\frac{5x}{2}\right)^3 + \dots\right]$ |        |
|             | $= \frac{1}{8} \left[ 1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$                                                                                               |        |
|             | $= \frac{1}{8} [1 - 7.5x + 37.5x^2 - 156.25 x^3 + \dots]$                                                                                                                                   |        |
|             | $=\frac{1}{8}-\frac{15}{16}x;+\frac{75}{16}x^2-\frac{625}{32}x^3+\ldots$                                                                                                                    | A1 A1  |
|             | or $\frac{1}{8} - \frac{15}{16}x; + 4\frac{11}{16}x^2 - 19\frac{17}{32}x^3 + \dots$                                                                                                         |        |
|             |                                                                                                                                                                                             | (6)    |
| Notes       |                                                                                                                                                                                             |        |
| M1:         | Mark can be implied by a constant term of $(2)^{-3}$ or $\frac{1}{8}$ .                                                                                                                     |        |
| <u>B1</u> : | $\underline{2^{-3}}$ or $\frac{1}{\underline{8}}$ outside brackets or $\frac{1}{\underline{8}}$ as candidate's constant term in their binomial expans                                       |        |
| M1:         | Expands $(+kx)^{-3}$ , $k = a$ value $\neq 1$ to give any 2 terms out of 4 terms simplified or u                                                                                            | un-    |
|             | simplified, Eg: $1 + (-3)(kx)$ or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ or                                                                                            |        |
|             | $1 + \dots + \frac{(-3)(-4)}{2!}(kx)^2$ or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ are fine for M1.                                                                     |        |
| A1:         | A correct simplified or un-simplified $1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^2$                                                                            | 3      |
|             | expansion with consistent $(kx)$ . Note that $(kx)$ must be consistent and $k = a$ value $\neq$                                                                                             | 1. (on |
|             | the RHS, not necessarily the LHS) in a candidate's expansion.                                                                                                                               |        |
| A1:         | For $\frac{1}{8} - \frac{15}{16}x$ (simplified) or also allow $0.125 - 0.9375x$ .                                                                                                           |        |
| A1:         | Accept only $\frac{75}{16}x^2 - \frac{625}{32}x^3$ or $4\frac{11}{16}x^2 - 19\frac{17}{32}x^3$ or $4.6875x^2 - 19.53125x^3$                                                                 |        |

| Question      | Scheme                                                                                                                                                                                                              | Marks                     |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
| <b>2(a)</b>   | a) $x^3 + 2xy - x - y^3 - 20 = 0$                                                                                                                                                                                   |                           |  |  |
|               | $\left\{ \frac{\cancel{2}}{\cancel{2}} \times \right\}  \underline{3x^2} + \left( \underline{2y + 2x \frac{dy}{dx}} \right) \underline{-1 - 3y^2}  \frac{dy}{dx} = 0$                                               | M1 <u>A1</u><br><u>B1</u> |  |  |
|               | $3x^{2} + 2y - 1 + (2x - 3y^{2})\frac{dy}{dx} = 0$                                                                                                                                                                  | dM1                       |  |  |
|               | $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}  \text{or}  \frac{1 - 3x^2 - 2y}{2x - 3y^2}  \text{cso}$                                                                                                           | A1                        |  |  |
|               |                                                                                                                                                                                                                     | (5)                       |  |  |
| (b)           | At P(3, -2), m(T) = $\frac{dy}{dx} = \frac{3(3)^2 + 2(-2) - 1}{3(-2)^2 - 2(3)}; = \frac{22}{6}$ or $\frac{11}{3}$<br>and either T: $y - 2 = \frac{11}{3}(x - 3)$ or $(-2) = (\frac{11}{3})(3) + c \Rightarrow c =,$ | M1                        |  |  |
|               | <b>T</b> : $11x - 3y - 39 = 0$ <b>or</b> $K(11x - 3y - 39) = 0$ <b>cso</b>                                                                                                                                          | A1                        |  |  |
|               |                                                                                                                                                                                                                     | (2)                       |  |  |
|               |                                                                                                                                                                                                                     | (7 marks)                 |  |  |
| Notes:        |                                                                                                                                                                                                                     |                           |  |  |
| (Iş           | fferentiates implicitly to include either $2y \frac{dx}{dy}$ or $x^3 \rightarrow \pm kx^2 \frac{dx}{dy}$ or $-x \rightarrow -\frac{dx}{dy}$<br>gnore $\left(\frac{dx}{dy} = \right)$ .                              |                           |  |  |
|               | $\rightarrow 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \rightarrow -\frac{dx}{dy} - 3y^2 = 0$                                                                                                                      |                           |  |  |
| <b>B1:</b> 2  | $xy \to 2y \frac{\mathrm{d}x}{\mathrm{d}y} + 2x$                                                                                                                                                                    |                           |  |  |
| dM1: D        | ependent on the first method mark being awarded. An attempt to factorise out                                                                                                                                        | all the                   |  |  |
| te            | <b>rms in</b> $\frac{dx}{dy}$ as long as there are <i>at least two terms</i> in $\frac{dx}{dy}$ .                                                                                                                   |                           |  |  |
| <b>A1:</b> Fo | A1: For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$                                                                                                                                  |                           |  |  |
| (b)           | (b)                                                                                                                                                                                                                 |                           |  |  |
| M1: So        | Some attempt to substitute both $x = 3$ and $y = -2$ into their $\frac{dy}{dx}$ which contains both x and                                                                                                           |                           |  |  |
|               | o find $m_T$ and                                                                                                                                                                                                    |                           |  |  |
| •             | either applies $y - 2 = (\text{their } m_T)(x - 3)$ , where $m_T$ is a numerical value.                                                                                                                             |                           |  |  |
| •             | or finds c by solving $(-2) = (\text{their } m_T)(3) + c$ , where $m_T$ is a numerical value.                                                                                                                       |                           |  |  |
|               | Accept any integer multiple of $11x - 3y - 39 = 0$ or $11x - 39 - 3y = 0$ or $-11x + 3y + 39 = 0$ , where their tangent equation is equal to 0.                                                                     |                           |  |  |

| Question     | Scheme                                                                                                        | Marks              |
|--------------|---------------------------------------------------------------------------------------------------------------|--------------------|
| <b>3</b> (a) | $1 = A(3x - 1)^2 + Bx(3x - 1) + Cx$                                                                           | B1                 |
|              | $x \rightarrow 0  (1 = A)$                                                                                    | M1                 |
|              | $x \rightarrow \frac{1}{3}$ $1 = \frac{1}{3}C \implies C = 3$ any two constants correct coefficients of $x^2$ | A1                 |
|              | $0 = 9A + 3B \implies B = -3$ all three constants correct                                                     | A1                 |
|              |                                                                                                               | (4)                |
| (b)(i)       | $\int \left(\frac{1}{x} - \frac{3}{3x - 1} + \frac{3}{(3x - 1)^2}\right) dx$                                  |                    |
|              | $= \ln x - \frac{3}{3} \ln (3x - 1) + \frac{3}{(-1)^3} (3x - 1)^{-1}  (+C)$                                   | M1<br>A1ft<br>A1ft |
|              | $\left( = \ln x - \ln (3x - 1) - \frac{1}{3x - 1}  (+C) \right)$                                              |                    |
|              |                                                                                                               | (3)                |
| (b)(ii)      | $\int_{1}^{2} f(x) dx = \left[ \ln x - \ln (3x - 1) - \frac{1}{3x - 1} \right]_{1}^{2}$                       |                    |
|              | $= \left( \ln 2 - \ln 5 - \frac{1}{5} \right) - \left( \ln 1 - \ln 2 - \frac{1}{2} \right)$                   | M1                 |
|              | $=\ln\frac{2\times 2}{5}+\dots$                                                                               | M1                 |
|              | $=\frac{3}{10}+\ln\left(\frac{4}{5}\right)$                                                                   | A1                 |
|              |                                                                                                               | (3)                |
|              | ·                                                                                                             | (10 marks          |

#### Notes:

**(a)** 

**B1:** Obtaining  $1 = A(3x-1)^2 + Bx(3x-1) + Cx$  at any stage. This will usually be at the beginning of the solution but, if the cover-up rule is used, it could appear later.

- M1: A complete method of finding any one of the three constants. If either A = 1 or C = 3 is given without working or, at least, without incorrect working, allow this M1 use of the cover-up rule is acceptable. In principle, an alternative method is equating coefficients (or substituting three values other than 0 and  $\frac{1}{3}$ ), obtaining a sufficient set of equations and solving for any one of the three constants.
- A1: Any two of A, B and C correct. These will usually, but not always, be A and C.
- A1: All three of *A*, *B* and *C* correct. If all three constants are correct and the answers do not clearly conflict with any working, allow all 4 marks (including the B1) bod. There are a number of possible ways of finding *B* but, as long as the M has been gained, you need not consider the method used.

#### Question 3 notes continued

#### (b)(ii)

- M1: Dependent upon the M mark in (b). Substituting in the correct limits and subtracting, not necessarily the right way round. There must be evidence that both 1 and 2 have been used but errors in substitution do not lose the mark.
- M1: Dependent upon both previous Ms. Applies the addition and/or subtraction rules of logs to obtain a single logarithm. Either the addition or the subtraction rule of logs must be used correctly at least once to gain this mark and this must be seen in the attempt at (b)(ii).
- A1: The correct answer in the form specified. Accept equivalent fractions including exact decimals for *a* and or *b*.

Accept  $\ln \frac{4}{5} + \frac{3}{10}$ .

 $\frac{3}{10} - \ln \frac{5}{4}$  is not acceptable.

| Questio | n Scheme                                                                                                                                       | Marks    |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| 4(a)    | $\frac{\mathrm{d}x}{\mathrm{d}t} = 2\sqrt{3}\cos 2t$                                                                                           | B1       |  |  |
|         | $\frac{\mathrm{d}y}{\mathrm{d}t} = -8\cos t\sin t$                                                                                             | M1 A1    |  |  |
|         | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-8\cos t\sin t}{2\sqrt{3}\cos 2t}$                                                                    | M1       |  |  |
|         | $= -\frac{4\sin 2t}{2\sqrt{3}\cos 2t}$                                                                                                         |          |  |  |
|         | $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2}{3}\sqrt{3}\tan 2t \qquad \left(k = -\frac{2}{3}\right)$                                           | A1       |  |  |
|         |                                                                                                                                                | (5)      |  |  |
| (b)     | When $t = \frac{\pi}{3}$ $x = \frac{3}{2}$ , $y = 1$ can be implied                                                                            | B1       |  |  |
|         | $m = -\frac{2}{3}\sqrt{3}\tan\left(\frac{2\pi}{3}\right)  (=2)$                                                                                | M1       |  |  |
|         | $y - 1 = 2\left(x - \frac{3}{2}\right)$                                                                                                        | dM1      |  |  |
|         | y = 2x - 2                                                                                                                                     | A1       |  |  |
|         |                                                                                                                                                | (4)      |  |  |
|         | (                                                                                                                                              | 9 marks) |  |  |
| Notes:  |                                                                                                                                                |          |  |  |
|         | (a)<br>B1: The correct $\frac{dx}{dt}$                                                                                                         |          |  |  |
| M1: -   | $\frac{dy}{dt} = \pm k \cos t \sin t$ or $\pm k \sin 2t$ , where k is a non-zero constant. Allow $k = 1$                                       |          |  |  |
| A1: -   | $\frac{dy}{dt} = -8\cos t \sin t$ or $-4\sin 2t$ or equivalent. In this question, it is possible to get a correct                              |          |  |  |
| tl      | answer after incorrect working, e.g. $2\cos 2t - 2 \rightarrow -4\sin 2t$ . This should lose this mark and the next A but ignore in part (b).  |          |  |  |
|         | : Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ , or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$ . The answer must be a |          |  |  |
| f       | unction of <i>t</i> only.                                                                                                                      |          |  |  |

| Quest | Question 4 notes continued                                                                                                                                                                      |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| A1:   | The correct answer in the form specified. They don't have to explicitly state $k = -\frac{2}{3}$ but                                                                                            |  |  |  |
|       | there must be evidence that the constant is $-\frac{2}{3}$ . Accept equivalent fractions.                                                                                                       |  |  |  |
| (b)   |                                                                                                                                                                                                 |  |  |  |
| B1:   | That when $t = \frac{\pi}{3}$ , $x = \frac{3}{2}$ and $y = 1$ . Exact numerical values are required but the values can                                                                          |  |  |  |
|       | be implied, for example by a correct final answer, and can occur anywhere in the question.                                                                                                      |  |  |  |
| M1:   | Substituting $t = \frac{\pi}{3}$ into their $\frac{dy}{dx}$ . Trigonometric terms, e.g. $\tan \frac{2\pi}{3}$ need not be evaluated.                                                            |  |  |  |
| dM1:  | Dependent on the previous M. Finding an equation of a tangent with their point and their numerical value of the gradient of the tangent, not the normal. Expressions like $\tan \frac{2\pi}{3}$ |  |  |  |
|       | must be evaluated. The equation must be linear. Using $y - y' = m(x - x')$ . They should get                                                                                                    |  |  |  |
|       | x' and y' the right way round. Alternatively writing $y = (\text{their } m)x + c$ and using                                                                                                     |  |  |  |
|       | their point, the right way round, to find c.                                                                                                                                                    |  |  |  |
| A1:   | cao. The correct answer in the form specified.                                                                                                                                                  |  |  |  |

| Question      | 5                                                                                                                                                               | Scheme                                                                                                     | Marks     |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------|
| 5(a)          | $y = 4x - xe^{\frac{1}{2}x}, x \ge 0$                                                                                                                           |                                                                                                            |           |
|               | $\left\{ y = 0 \implies 4x - x  \mathrm{e}^{\frac{1}{2}x} \right\}$                                                                                             | $f = 0 \Longrightarrow x(4 - e^{\frac{1}{2}x}) = 0 \implies$                                               |           |
|               | $e^{\frac{1}{2}x} = 4 \implies x_A = 4\ln 2$                                                                                                                    | Attempts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$<br>in terms of $\pm \lambda \ln \mu$ where $\mu > 0$ | M1        |
|               |                                                                                                                                                                 | $4\ln 2$ cao (Ignore $x=0$ )                                                                               | A1        |
|               |                                                                                                                                                                 |                                                                                                            | (2)       |
| (b)           | $\left\{\int x e^{\frac{1}{2}x} dx\right\} = 2x e^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}$                                                               | $\alpha x e^{\frac{1}{2}x} - \beta \int e^{\frac{1}{2}x} \{ dx \}, \alpha > 0, \beta > 0$                  | M1        |
|               | $(\mathbf{J}^{\mathbf{x}\mathbf{c}} - \mathbf{u}^{\mathbf{x}}) = 2\mathbf{x}\mathbf{c} - \mathbf{J}^{\mathbf{z}\mathbf{c}} - (\mathbf{u}^{\mathbf{x}})$         | $2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}, \text{ with or without } dx$                          | A1        |
|               | =                                                                                                                                                               | $2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \{+c\}$                                                            | A1        |
|               |                                                                                                                                                                 |                                                                                                            | (3)       |
| (c)           | $\left\{\int 4x\mathrm{d}x\right\} = 2x^2$                                                                                                                      |                                                                                                            | B1        |
|               | $\left\{\int_{0}^{4\ln 2} (4x - xe^{\frac{1}{2}x}) dx\right\} = \left[2x^{2} - \left(2x^{2}\right)\right]$                                                      | $xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}$                                                                    | -         |
|               | $= \left(2(4\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 4e^{\frac{1}{2}(4\ln 2)}\right) - \left(2(0)^2 - 2(0)e^{\frac{1}{2}(0)} + 4e^{\frac{1}{2}(0)}\right)$ |                                                                                                            | M1        |
|               | $= (32(\ln 2)^2 - 32(\ln 2) + 16) - (4)$                                                                                                                        |                                                                                                            | A1        |
|               | $= 32(\ln 2)^2 - 32(\ln 2) + 12$                                                                                                                                |                                                                                                            | AI        |
|               |                                                                                                                                                                 |                                                                                                            | (3)       |
|               |                                                                                                                                                                 |                                                                                                            | (8 marks) |
| Notes:<br>(a) |                                                                                                                                                                 |                                                                                                            |           |
|               | empts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$ if                                                                                                           | in terms of $+\lambda \ln \mu$ where $\mu > 0$                                                             |           |
|               |                                                                                                                                                                 |                                                                                                            |           |
| (b)           |                                                                                                                                                                 |                                                                                                            |           |
| M1: Integ     | Integration by parts is applied in the form $\alpha x e^{\frac{1}{2}x} - \beta \int e^{\frac{1}{2}x} \{dx\}$ , where $\alpha > 0, \beta > 0$ .                  |                                                                                                            |           |
| (mu           | (must be in this form) with or without $dx$                                                                                                                     |                                                                                                            |           |

| Quest | Question 5 notes continued                                                                                                                         |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| A1:   | $2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}$ or equivalent, with or without $dx$ . Can be un-simplified.                                   |  |  |  |
| A1:   | $2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}$ or equivalent with or without + c. Can be un-simplified.                                                  |  |  |  |
| (c)   |                                                                                                                                                    |  |  |  |
| B1:   | $4x \rightarrow 2x^2$ or $\frac{4x^2}{2}$ oe                                                                                                       |  |  |  |
| M1:   | <b>Complete</b> method of applying limits of their $x_A$ and 0 to all terms of an expression of the                                                |  |  |  |
|       | form $\pm Ax^2 \pm Bxe^{\frac{1}{2}x} \pm Ce^{\frac{1}{2}x}$ . (Where $A \Box 0, B \Box 0$ and $C \Box 0$ ) and subtracting the correct way round. |  |  |  |
| A1:   | A correct three term exact quadratic expression in ln2. For example allow for A1                                                                   |  |  |  |
|       | • $32(\ln 2)^2 - 32(\ln 2) + 12$                                                                                                                   |  |  |  |
|       | • $8(2\ln 2)^2 - 8(4\ln 2) + 12$                                                                                                                   |  |  |  |
|       | • $2(4\ln 2)^2 - 32(\ln 2) + 12$                                                                                                                   |  |  |  |
|       | • $2(4\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 12$                                                                                            |  |  |  |
|       | Note that the constant term of 12 needs to be combined from $4e^{\frac{1}{2}(4\ln 2)} - 4e^{\frac{1}{2}(0)}$ o.e.                                  |  |  |  |
|       | Also allow $32\ln 2(\ln 2 - 1) + 12$ or $32\ln 2\left(\ln 2 - 1 + \frac{12}{32\ln 2}\right)$ for A1.                                               |  |  |  |
|       | Allow $32(\ln^2 2) - 32(\ln 2) + 12$ for the final A1.                                                                                             |  |  |  |

| Quest  | tion                                                                                                                                |                                                                              | Scheme                               |                                                         | Marks    |
|--------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------|----------|
| 6      |                                                                                                                                     | Assumption: there exists positive real numbers <i>a</i> , <i>b</i> such that |                                      |                                                         | D1       |
|        |                                                                                                                                     | $a+b < 2\sqrt{ab}$                                                           |                                      |                                                         | B1       |
|        |                                                                                                                                     | Method 1                                                                     | Method 2                             |                                                         |          |
|        |                                                                                                                                     | $a+b-2\sqrt{ab} < 0$                                                         | $(a+b)^2 = (2\sqrt{ab})^2$           | A complete method for                                   |          |
|        |                                                                                                                                     | $(\sqrt{a}-\sqrt{b})^2 < 0$                                                  | $a^2 + 2ab + b^2 < 4ab$              | creating                                                | M1A1     |
|        |                                                                                                                                     |                                                                              | $a^2 - 2ab + b^2 < 0$                | $(f(a,b))^2 < 0$                                        |          |
|        |                                                                                                                                     |                                                                              | $(a-b)^2 < 0$                        |                                                         |          |
|        |                                                                                                                                     | This is a contradiction, therefore                                           |                                      |                                                         |          |
|        |                                                                                                                                     | If <i>a</i> , <i>b</i> are posi                                              | tive real numbers, then $a + b$      | $\geq 2\sqrt{ab}$                                       | A1       |
|        |                                                                                                                                     |                                                                              |                                      |                                                         | (4)      |
|        |                                                                                                                                     |                                                                              |                                      |                                                         | 4 marks) |
| Notes: |                                                                                                                                     |                                                                              |                                      |                                                         |          |
| B1:    |                                                                                                                                     |                                                                              | · •                                  | red to start their proof by ass                         | -        |
|        | that the contrary. That is "if a, b are positive real numbers, then $a+b \ge 2\sqrt{ab}$ " is true.                                 |                                                                              |                                      | e.                                                      |          |
|        | Acce                                                                                                                                | ept, as a minimum, the                                                       | re exists $a$ and $b$ such that $a$  | $a + b < 2\sqrt{ab}$                                    |          |
| M1:    | For                                                                                                                                 | starting with $a+b < 2\sqrt{2}$                                              | $\sqrt{ab}$ and proceeding to either | $(\sqrt{a} - \sqrt{b})^2 < 0 \text{ or } (a - b)^2 < 0$ | 0        |
| A1:    | All algebra is required to be correct. Do not accept, for instance, $(a + b)^2 = 2\sqrt{ab^2}$ even when followed by correct lines. |                                                                              |                                      | even                                                    |          |
| A1:    | A fully correct proof by contradiction. It must include a statement that $(a-b)^2 < 0$ is a                                         |                                                                              |                                      |                                                         |          |
|        | contradiction so if a, b are positive real numbers, then $a + b \ge 2\sqrt{ab}$                                                     |                                                                              |                                      |                                                         |          |

| Question                                                                                                                                  | Scheme                                                                                                                                                                        |                                                                                                                          |          |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------|
| 7(a)                                                                                                                                      | 7(a) $x = 4\cos\left(t + \frac{\pi}{6}\right),  y = 2\sin t$                                                                                                                  |                                                                                                                          |          |
|                                                                                                                                           | $x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right)$                                                                             |                                                                                                                          | M1       |
|                                                                                                                                           |                                                                                                                                                                               | sin t Adds their expanded x<br>(which is in terms of t)<br>to $2\sin t$                                                  | dM1      |
|                                                                                                                                           | $=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) + 2\sin t$                                                                             |                                                                                                                          |          |
|                                                                                                                                           | $=2\sqrt{3}\cos t$ * <b>cso</b>                                                                                                                                               |                                                                                                                          | A1*      |
|                                                                                                                                           |                                                                                                                                                                               |                                                                                                                          | (3)      |
| (b)                                                                                                                                       | (b) $\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$ Applies $\cos^2 t + \sin^2 t = $ achieve an equip containing <b>only</b> x's and                  |                                                                                                                          | M1       |
|                                                                                                                                           | $\implies \frac{(x+y)^2}{12} + \frac{y^2}{4}$                                                                                                                                 | = 1                                                                                                                      |          |
|                                                                                                                                           | $\Rightarrow (x+y)^2 + 3y^2 = 12$                                                                                                                                             | $\Rightarrow (x+y)^2 + 3y^2 = 12$                                                                                        | A1       |
|                                                                                                                                           |                                                                                                                                                                               | ${a=3, b=12}$                                                                                                            | (2)      |
|                                                                                                                                           | Alternative                                                                                                                                                                   |                                                                                                                          |          |
|                                                                                                                                           | $(x + y)^{2} = 12\cos^{2} t = 12(1 - \sin^{2} t) = 12 - 12\sin^{2} t$                                                                                                         |                                                                                                                          |          |
|                                                                                                                                           | $(x+y)^2 = 12 - 3y^2$                                                                                                                                                         | Applies $\cos^2 t + \sin^2 t = 1$ to<br>achieve an equation<br>containing <b>only</b> <i>x</i> 's and <i>y</i> 's.       | M1       |
|                                                                                                                                           | $\Rightarrow (x+y)^2 + 3y^2 = 12$                                                                                                                                             | $(x+y)^2 + 3y^2 = 12$                                                                                                    | A1       |
|                                                                                                                                           |                                                                                                                                                                               |                                                                                                                          | (2)      |
|                                                                                                                                           |                                                                                                                                                                               | (:                                                                                                                       | 5 marks) |
| Notes:                                                                                                                                    |                                                                                                                                                                               |                                                                                                                          |          |
| (a)                                                                                                                                       |                                                                                                                                                                               |                                                                                                                          |          |
| M1: $\cos(t)$                                                                                                                             | $\left( + \frac{\pi}{6} \right) \rightarrow \cos t \cos \left( \frac{\pi}{6} \right) \pm \sin t \sin \left( \frac{\pi}{6} \right)$ or $\cos \left( t + \frac{\pi}{6} \right)$ | $\left(\frac{\sqrt{3}}{2}\right) \rightarrow \left(\frac{\sqrt{3}}{2}\right) \cos t \pm \left(\frac{1}{2}\right) \sin t$ |          |
| <b>dM1:</b> Adds their expanded x (which is in terms of t) to $2\sin t$ .                                                                 |                                                                                                                                                                               |                                                                                                                          |          |
| A1*: Evidence of $\cos\left(\frac{\pi}{6}\right)$ and $\sin\left(\frac{\pi}{6}\right)$ evaluated and the proof is correct with no errors. |                                                                                                                                                                               |                                                                                                                          |          |
| (b)<br>M1: Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only x's and y's.<br>A1: leading $(x + y)^2 + 3y^2 = 12$   |                                                                                                                                                                               |                                                                                                                          |          |



| Question     | Scheme                                                                                                                       |                                                                             | Marks         |
|--------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------|
| <b>8</b> (a) | $\frac{\mathrm{d}\theta}{\mathrm{d}t} = \lambda(120 - \theta),  \theta \leqslant 100$                                        |                                                                             |               |
|              | $\int \frac{1}{120 - \theta} \mathrm{d}\theta = \int \lambda \mathrm{d}t$                                                    |                                                                             | B1            |
|              | $-\ln(120-\theta); = \lambda t + c$                                                                                          | For integrating lhs M1 A1<br>For integrating rhs M1 A1                      | M1A1;<br>M1A1 |
|              | $\{t = 0, \theta = 20 \implies\} -\ln(100) = \lambda(0)$                                                                     | +c                                                                          |               |
|              | $\Rightarrow -\ln(120 - \theta) = \lambda$                                                                                   | $t - \ln 100$                                                               |               |
|              | $\Rightarrow -\lambda t = \ln(120 - 1)$                                                                                      | $\theta$ ) – ln 100                                                         | M1            |
|              | $\implies -\lambda t = \ln\left(\frac{120 - \theta}{100}\right)$                                                             |                                                                             |               |
|              | $e^{-\lambda t} = \frac{120 - \theta}{100}$                                                                                  |                                                                             | dddM1         |
|              | $100 e^{-\lambda t} = 120 - \theta$                                                                                          |                                                                             |               |
|              | leading to $\theta = 120 - 100e^{-\lambda t}$                                                                                |                                                                             | A1*           |
|              |                                                                                                                              |                                                                             | (8)           |
| <b>(b)</b>   | $\{\lambda = 0.01, \theta = 100 \Rightarrow\}$                                                                               | $100 = 120 - 100 \ \mathrm{e}^{-0.01t}$                                     | M1            |
|              | $\Rightarrow 100 e^{-0.01t} = 120 - 100 \Rightarrow$ $-0.01t = \ln\left(\frac{120 - 100}{100}\right)$ $1 \qquad (120 - 100)$ | Uses correct order of operations by moving from $100 = 120 - 100e^{-0.01t}$ | D.(1          |
|              | $t = \frac{1}{-0.01} \ln\left(\frac{120 - 100}{100}\right)$                                                                  | to give $t = \dots$ and $t = A \ln B$ , where $B > 0$                       | dM1           |
|              | $\left\{t = \frac{1}{-0.01}\ln\left(\frac{1}{5}\right) = 100\ln 5\right\}$                                                   |                                                                             |               |
|              | <i>t</i> = 160.94379 161 (                                                                                                   | s) (nearest second) awrt 161                                                | A1            |
|              |                                                                                                                              |                                                                             | (3)           |
|              |                                                                                                                              |                                                                             | (11<br>marks) |

#### Notes:

**(a)** 

- B1M1A1M1A1: Mark as in the scheme.
- M1: Substitutes t = 0 AND  $\theta = 20$  in an integrated equation leading to

$$\pm \lambda t = \ln(f(\theta))$$

- **dddM1:** Uses a fully correct method to eliminate their logarithms and writes down an equation containing their evaluated constant of integration.
- A1\*: Correct answer with no errors. This is a given answer

**(b)** 

- **M1:** Substitutes  $\lambda = 0.01$ ,  $\theta = 100$  into given equation
- M1: See scheme
- A1: Awrt 161 seconds.

| Question | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| 9 (a)    | A(3, 5, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1     |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1)    |  |
| (b)      | $\{l_2:\} \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$<br>a + $\lambda \mathbf{d}$ or $\mathbf{a} + \mu \mathbf{d}$ , $\mathbf{a} + t \mathbf{d} \mathbf{a} \neq 0$ , $\mathbf{d} \neq 0$<br>with either $\mathbf{a} = \mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$ or $\mathbf{d} = -5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$ ,<br>or a multiple of $-5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$ | M1     |  |
|          | Correct vector equation using $\mathbf{r} = \mathbf{or} \ l_2 =$                                                                                                                                                                                                                                                                                                                                                                                   | A1     |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2)    |  |
| (c)      | $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} - \begin{pmatrix} 3\\5\\0 \end{pmatrix} = \begin{pmatrix} -2\\0\\2 \end{pmatrix}$                                                                                                                                                                                                                                                         |        |  |
|          | $AP = \sqrt{(-2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$ Full method for finding AP                                                                                                                                                                                                                                                                                                                                                             | M1     |  |
|          | $2\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1     |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2)    |  |
| (d)      | So $\overrightarrow{AP} = \begin{pmatrix} -2\\0\\2 \end{pmatrix}$ and $\mathbf{d}_2 = \begin{pmatrix} -5\\4\\3 \end{pmatrix} \Rightarrow \begin{pmatrix} -2\\0\\2 \end{pmatrix} \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ Realisation that the dot product is required between $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$                                                                | M1     |  |
|          | $\{\cos \theta =\} \frac{\overrightarrow{AP} \cdot \mathbf{d}_2}{\left  \overrightarrow{AP} \right  \left  \mathbf{d}_2 \right } = \frac{\pm \left( \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} \right)}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 + (4)^2 + (3)^2}}$                                                                                                                            | dM1    |  |
|          | $\left\{\cos\theta\right\} = \frac{\pm(10+0+6)}{\sqrt{8}\sqrt{50}} = \frac{4}{5}$                                                                                                                                                                                                                                                                                                                                                                  | A1 cso |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3)    |  |
| (e)      | {Area $APE =$ } $\frac{1}{2}$ (their $2\sqrt{2}$ ) <sup>2</sup> sin $\theta$                                                                                                                                                                                                                                                                                                                                                                       | M1     |  |
|          | = 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1     |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2)    |  |

| Questio      | 1 Scheme                                                                                                                                                                                                                                                                                                        |                                                                                                                 | Marks    |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|
| 9(f)         | $\overrightarrow{PE} = (-5\lambda)\mathbf{i} + (4\lambda)\mathbf{j} + (3\lambda)\mathbf{k}$ and $PE = \text{their } 2\sqrt{2}$ f                                                                                                                                                                                | rom part (c)                                                                                                    |          |
|              | ${PE^2 = (-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})^2}$                                                                                                                                                                                                                            | This mark can be implied.                                                                                       | M1       |
|              | $\left\{ \Rightarrow 50\lambda^2 = 8 \Rightarrow \lambda^2 = \frac{4}{25} \Rightarrow \right\} \lambda = \pm \frac{2}{5}$                                                                                                                                                                                       | Either $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$                                                      | A1       |
|              | $l_2: \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} \pm \frac{2}{5} \begin{pmatrix} -5\\4\\3 \end{pmatrix}$                                                                                                                                                                                                | dependent on the<br>previous M mark<br>Substitutes at least one<br>of their values of $\lambda$ into<br>$l_2$ . | dM1      |
|              | $\left\{\overline{OE}\right\} = \begin{pmatrix} 3\\ \frac{17}{5}\\ \frac{4}{5} \end{bmatrix} \text{ or } \begin{pmatrix} 3\\ 3.4\\ 0.8 \end{pmatrix}, \ \left\{\overline{OE}\right\} = \begin{pmatrix} -1\\ \frac{33}{5}\\ \frac{16}{5} \end{bmatrix} \text{ or } \begin{pmatrix} -1\\ 6.6\\ 3.2 \end{pmatrix}$ | At least one set of coordinates are correct.                                                                    | A1       |
|              | $\left(\frac{4}{5}\right)  (0.0) \qquad \left(\frac{16}{5}\right)  (0.2)$                                                                                                                                                                                                                                       | Both sets of coordinates are correct.                                                                           | A1       |
|              |                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | (5)      |
|              |                                                                                                                                                                                                                                                                                                                 | (1:                                                                                                             | 5 marks) |
| Notes:       |                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |          |
| (a)          |                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |          |
| <b>B1:</b> A | llow $A(3, 5, 0)$ or $3\mathbf{i} + 5\mathbf{j}$ or $3\mathbf{i} + 5\mathbf{j} + 0\mathbf{k}$ or $\begin{pmatrix} 3\\5\\0 \end{pmatrix}$ or be                                                                                                                                                                  | anefit of the doubt 5<br>0                                                                                      |          |
|              | prrect vector equation using $\mathbf{r} = \mathbf{or}  l = \mathbf{or}  l_2 = \mathbf{or}$                                                                                                                                                                                                                     |                                                                                                                 |          |
| i            | e. Writing $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \mathbf{d}$ , whe                                                                                                 | ere <b>d</b> is a multiple of $\begin{pmatrix} -5\\4\\3 \end{pmatrix}$ .                                        |          |
| ľ            | <b>ote:</b> Allow the use of parameters $\mu$ or <i>t</i> instead of $\lambda$                                                                                                                                                                                                                                  |                                                                                                                 |          |
|              | Finds the difference between $\overrightarrow{OP}$ and their $\overrightarrow{OA}$ and applies Pythagoras to the result to find $AP$                                                                                                                                                                            |                                                                                                                 |          |
| I            | Note: Allow M1A1 for $\begin{pmatrix} 2\\0\\2 \end{pmatrix}$ leading to $AP = \sqrt{(2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$ .                                                                                                                                                                            |                                                                                                                 |          |

