Pearson

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE Mathematics

Core Mathematics 1 (6663/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code xxxxxxxx*
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme		Marks
1.	$\int\left(2 x^{5}-\frac{1}{4} x^{-3}-5\right) \mathrm{d} x$		
	Ignore any spurious integral signs throughout		
	$x^{n} \rightarrow x^{n+1}$	Raises any of their powers by 1. E.g. $x^{5} \rightarrow x^{6}$ or $x^{-3} \rightarrow x^{-2}$ or $k \rightarrow k x$ or $x^{\text {their } n} \rightarrow x^{\text {their } n+1}$. Allow the powers to be un-simplified e.g. $x^{5} \rightarrow x^{5+1}$ or $x^{-3} \rightarrow x^{-3+1}$ or $k x^{0} \rightarrow k x^{0+1}$.	M1
	$2 \times \frac{x^{5+1}}{6} \quad$ or $\quad-\frac{1}{4} \times \frac{x^{-3+1}}{-2}$	Any one of the first two terms correct simplified or un-simplified	A1
	Two of: $\frac{1}{3} x^{6}, \frac{1}{8} x^{-2},-5 x$	Any two correct simplified terms. Accept $+\frac{1}{8 x^{2}}$ for $+\frac{1}{8} x^{-2}$ but not x^{1} for x. Accept 0.125 for $\frac{1}{8}$ but $\frac{1}{3}$ would clearly need to be identified as 0.3 recurring.	A1
	$\frac{1}{3} x^{6}+\frac{1}{8} x^{-2}-5 x+c$	All correct and simplified and including $+c$ all on one line. Accept $+\frac{1}{8 x^{2}}$ for $+\frac{1}{8} x^{-2}$ but not x^{1} for x. Apply isw here.	A1
			(4 marks)

Question Number	Scheme		Marks
2.	$y=\sqrt{x}+\frac{4}{\sqrt{x}}+4=x^{\frac{1}{2}}+4 x^{-\frac{1}{2}}+4$		
	$x^{n} \rightarrow x^{n-1}$	Decreases any power by 1 . Either $x^{\frac{1}{2}} \rightarrow x^{-\frac{1}{2}}$ or $x^{-\frac{1}{2}} \rightarrow x^{-\frac{3}{2}}$ or $4 \rightarrow 0$ or $x^{\text {their } n} \rightarrow x^{\text {their } n-1}$ for fractional n.	M1
	$\begin{gathered} \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{1}{2} x^{-\frac{1}{2}}+4 \times-\frac{1}{2} x^{-\frac{3}{2}} \\ \left(=\frac{1}{2} x^{-\frac{1}{2}}-2 x^{-\frac{3}{2}}\right) \end{gathered}$	Correct derivative, simplified or unsimplified including indices. E.g. allow $\frac{1}{2}-1$ for $-\frac{1}{2}$ and allow $-\frac{1}{2}-1$ for $-\frac{3}{2}$	A1
	$x=8 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} 8^{-\frac{1}{2}}+4 \times-\frac{1}{2} 8^{-\frac{3}{2}}$	Attempts to substitute $x=8$ into their 'changed' (even integrated) expression that is clearly not y. If they attempt algebraic manipulation of their $\mathrm{d} y / \mathrm{d} x$ before substitution, this mark is still available.	M1
	$=\frac{1}{2 \sqrt{8}}-\frac{2}{(\sqrt{8})^{3}}=\frac{1}{2 \sqrt{8}}-\frac{2}{8 \sqrt{8}}=\frac{1}{8 \sqrt{2}}=\frac{1}{16} \sqrt{2}$	B1: $\sqrt{8}=2 \sqrt{2}$ seen or implied anywhere, including from substituting $x=8$ into y. May be seen explicitly or implied from e.g. $\begin{aligned} & 8^{\frac{3}{2}}=16 \sqrt{2} \text { or } 8^{\frac{5}{2}}=128 \sqrt{2} \text { or } \\ & 4 \sqrt{8}=8 \sqrt{2} \end{aligned}$	B1A1
	$\begin{array}{lllllll}2 \sqrt{8} & (\sqrt{8}) & 2 \sqrt{8} & 8 \sqrt{8} & 8 \sqrt{2} & 16\end{array}$	A1: cso $\frac{1}{16} \sqrt{2}$ or $\frac{\sqrt{2}}{16}$ and allow rational equivalents for $\frac{1}{16}$ e.g. $\frac{32}{512}$ Apply isw so award this mark as soon as a correct answer is seen.	B1A1
			(5 marks)

Question Number	Scheme		Marks
3.(a)	$\left(a_{2}=\right) 2 k$	$2 k$ only	B1
	$\left(a_{3}=\right) \frac{k(" 2 k "+1)}{" 2 k "}$	For substituting their a_{2} into $a_{3}=\frac{k\left(a_{2}+1\right)}{a_{2}}$ to find a_{3} in terms of just k	M1
	$\left(a_{3}=\right) \frac{2 k+1}{2}$	$\left(a_{3}=\right) \frac{2 k+1}{2}$ or exact simplified equivalent such as $\left(a_{3}=\right) k+\frac{1}{2}$ or $\frac{1}{2}(2 k+1)$ but not $k+\frac{k}{2 k}$ Must be seen in (a) but isw once a correct simplified answer is seen.	A1
			(3)
	Note that there are no marks in (b) for using an AP (or GP) sum formula unless their terms do form an AP (or GP).		
(b)	$\sum_{r=1}^{3} a_{r}=10 \Rightarrow 1+" 2 k "+" \frac{2 k+1}{2} "=10$	Writes $1+$ their $a_{2}+$ their $a_{3}=10$. E.g. $1+2 k+\frac{2 k^{2}+k}{2 k}=10$. Must be a correct follow through equation in terms of k only.	M1
	$\begin{gathered} \Rightarrow 2+4 k+2 k+1=20 \Rightarrow k=\ldots \\ \text { or e.g. } \\ \Rightarrow 6 k^{2}-17 k=0 \Rightarrow k=\ldots \end{gathered}$	Solves their equation in k which has come from the sum of 3 terms $=10$, and reaches $k=\ldots$ Condone poor algebra but if a quadratic is obtained then the usual rules apply for solving - see General Principles. (Note that it does not need to be a 3term quadratic in this case)	M1
	$(k=) \frac{17}{6}$	$k=\frac{17}{6}$ or exact equivalent e.g. $2 \frac{5}{6}$ Do not allow $k=\frac{8.5}{3}$ or $k=\frac{17 / 2}{3}$ Ignore any reference to $k=0$. Allow 2.83 recurring as long as the recurring is clearly indicated e.g. a dot over the 3 .	A1
			(3)
			(6 marks)

Question Number	Scheme		Marks
4. (a)	$206=140+(12-1) \times d \Rightarrow d=\ldots$	Uses $206=140+(12-1) \times d$ and proceeds as far as $d=\ldots$	M1
	$(d=) 6$	Correct answer only can score both marks.	A1
			(2)
(b)	Attempts $S_{n}=\frac{n}{2}(a+l)$ or $S_{12}=\frac{12}{2}(140+206)$ or $S_{12}=\frac{12}{2}(2 \times 140+(12-1) \times " 6 ")$ or $S_{n}=\frac{n}{2}(2 a+(n-1) d)$ with $n=12$, $a=140, l=206, d='^{\prime} 6^{\prime}$ WAY 1 $S_{11}=\frac{11}{2}(140+206-" 6 ")$ or $S_{11}=\frac{11}{2}(2 \times 140+(11-1) \times " 6 ")$ Or Attempts $S_{n}=\frac{n}{2}(a+l)$ or $S_{n}=\frac{n}{2}(2 a+(n-1) d)$ with $n=11$, $a=140, l=206-'^{\prime} 6^{\prime}, d=' 6 '$ WAY2 If they are using $S_{n}=\frac{n}{2}(2 a+(n-1) d)$, the n must be used consistently.		M1
	$\begin{gathered} S=2076 \text { WAY1 } \\ \text { or } \\ S=1870 \text { WAY } 2 \end{gathered}$	Correct sum (may be implied)	A1
	$\begin{gathered} (52-12) \times 206=\ldots \\ \text { or }(52-11) \times 206=\ldots \end{gathered}$	Attempts to find $(52-12) \times 206$ or $(52-11) \times 206$. Does not have to be consistent with their n used for the first Method mark.	M1
	$\begin{aligned} & \text { Total }= " 2076 "+" 8240 "=\ldots \\ & \text { (WAY 1) } \\ & \text { or } \\ & \text { Total }= " 1870 "+8446 "=\ldots \\ & \text { (WAY 2) } \end{aligned}$	Attempts to find the total by adding the sum to 12 terms with (52-12) lots of 206 or attempts to find the total by adding the sum to 11 terms with (52-11) lots of 206 . I.e. consistency is now required for this mark. Dependent on both previous method marks.	ddM1
	10316	cao	A1
			(5)
			(7 marks)

Question Number	Scheme		

(c)	$P Q^{2}=(0-4)^{2}+(19-3)^{2}$	Correct use of Pythagoras' Theorem on 2 points of the form $(0, p)$ and (q, r) where $q \neq 0$ and $p \neq r$ with p, q and r numeric.	M1	
	$P Q=\sqrt{4^{2}+16^{2}}$	Correct un-simplified numerical expression for $P Q$ including the square root. This must come from a correct P and Q. Allow e.g $\begin{aligned} & P Q=\sqrt{(0-4)^{2}+(19-3)^{2}} \\ & \text { Allow } \pm \sqrt{(0-4)^{2}+(19-3)^{2}} \end{aligned}$	A1	
	$P Q=4 \sqrt{17}$	Cao and cso i.e. This must come from a correct P and Q.	A1	
	Note that it is possible to obtain the correct value for PQ from $(-4,3)$ and $(0,19)$ and e.g. $(0,13)$ and $(4,-3)$ but the A marks in (c) can only be awarded for the correct P and Q .			
			(3)	
				(8 marks)

Question Number	Scheme		Marks
6.(a)	Replaces $2^{2 x+1}$ with $2^{2 x} \times 2$ or states $2^{2 x+1}=2^{2 x} \times 2$ $\operatorname{states}\left(2^{x}\right)^{2}=2^{2 x}$	Uses the addition or power law of indices on $2^{2 x}$ or $2^{2 x+1}$. E.g. $\begin{aligned} & 2^{x} \times 2^{x}=2^{2 x} \text { or }\left(2^{x}\right)^{2}=2^{2 x} \text { or } \\ & 2^{2 x+1}=2 \times 2^{2 x} \text { or } 2^{x+0.5}=2^{x} \times \sqrt{2} \\ & \text { or } 2^{2 x+1}=\left(2^{x+0.5}\right)^{2} . \end{aligned}$	M1
	$\begin{aligned} & 2^{2 x+1}-17 \times 2^{x}+8=0 \\ & \Rightarrow 2 y^{2}-17 y+8=0^{*} \end{aligned}$	Cso. Complete proof that includes explicit statements for the addition and power law of indices on $2^{2 x+1}$ with no errors. The equation needs to be as printed including the " $=0$ ". If they work backwards, they do not need to write down the printed answer first but must end with the version in 2^{x} including ${ }^{\prime}=0$ '.	A1*
	The following are examples of acceptable proofs.		
	$\begin{aligned} & 2^{2 x+1}=\left(2^{x+0.5}\right)^{2}=\left(2^{x} \sqrt{2}\right)^{2}=(y \sqrt{2})^{2}=2 y^{2} \\ & \Rightarrow 2^{2 x+1}-17\left(2^{x}\right)+8=2 y^{2}-17 y+8=0 \end{aligned}$		
	$\begin{gathered} 2 y^{2}=2 \times 2^{x} \times 2^{x}=2^{2 x+1} \\ \Rightarrow 2^{2 x+1}-17\left(2^{x}\right)+8=2 y^{2}-17 y+8=0 \end{gathered}$		
	$\begin{aligned} & 2 y^{2}-17 y+8=0 \Rightarrow 2\left(2^{x}\right)^{2}-17\left(2^{x}\right)+8=0 \\ \Rightarrow & 2 \times 2^{2 x}-17\left(2^{x}\right)+8=0 \Rightarrow 2^{2 x+1}-17\left(2^{x}\right)+8=0 \end{aligned}$		
	$\begin{gathered} 2^{2 x+1}=2 \times 2^{2 x} \Rightarrow 2 \times 2^{2 x}-17\left(2^{x}\right)+8=0 \\ \Rightarrow 2 y^{2}-17 y+8=0 \end{gathered}$ Scores M1A0 as $2^{2 x}=\left(2^{x}\right)^{2}$ has not been shown explicitly		
	Special Case: $2^{2 x+1}=2^{1} \times\left(2^{x}\right)^{2} \text { or } 2^{2 x+1}=\left(2^{x}\right)^{2} \times 2^{1}$ With or without the multiplication signs and with no subsequent explicit evidence of the power law scores M1A0		
	Example of insufficient working: $2^{2 x+1}=2\left(2^{x}\right)^{2}=2 y^{2}$ scores no marks as neither rule has been shown explicitly.		

(b)	$\begin{aligned} & 2 y^{2}-17 y+8=0 \Rightarrow(2 y-1)(y-8)(=0) \Rightarrow y=\ldots \\ & \text { or }= \\ & 2\left(2^{x}\right)^{2}-17\left(2^{x}\right)+8=0 \Rightarrow\left(2\left(2^{x}\right)-1\right)\left(\left(2^{x}\right)-8\right)(=0) \Rightarrow 2^{x}=\ldots \end{aligned}$ Solves the given quadratic either in terms of y or in terms of 2^{x} See General Principles for solving a 3 term quadratic Note that completing the square on e.g. $y^{2}-\frac{17}{2} y+4=0$ requires $\left(y \pm \frac{17}{4}\right)^{2} \pm q \pm 4=0 \Rightarrow y=\ldots$		M1
	$(y=) \frac{1}{2}, 8$ or $\left(2^{x}=\right) \frac{1}{2}, 8$	Correct values	A1
	$\Rightarrow 2^{x}=\frac{1}{2}, 8 \Rightarrow x=-1,3$	M1: Either finds one correct value of x for their 2^{x} or obtains a correct numerical expression in terms of logs e.g. for $k>0$ $2^{x}=k \Rightarrow x=\log _{2} k \text { or } \frac{\log k}{\log 2}$ A1: $x=-1,3$ only. Must be values of x.	M1 A1
			(4)
			(6 marks)

(b)	$\begin{gathered} \frac{1}{x}+5=-3 x+c \Rightarrow 1+5 x=-3 x^{2}+c x \\ \Rightarrow 3 x^{2}+5 x-c x+1=0 \end{gathered}$	Sets $\frac{1}{x}+5=-3 x+c$, attempts to multiply by x and collects terms (to one side). Allow e.g. " $>$ " or " $<$ " for " $=$ ". At least 3 of the terms must be multiplied by x, e.g. allow one slip. The ' $=0$ ' may be implied by subsequent work and provided correct work follows, full marks are still possible in (b).	M1	
	$b^{2}-4 a c=(5-c)^{2}-4 \times 1 \times 3$	Attempts to use $b^{2}-4 a c$ with their a, b and c from their equation where $a= \pm 3, b= \pm 5 \pm c$ and $c= \pm 1$. This could be as part of the quadratic formula or as $b^{2}<4 a c$ or as $b^{2}>4 a c$ or as $\sqrt{b^{2}-4 a c}$ etc. If it is part of the quadratic formula only look for use of $b^{2}-4 a c$. There must be no x 's.	M1	
	$(5-c)^{2}>12 *$	Completes proof with no errors or incorrect statements and with the " $>$ " appearing correctly before the final answer, which could be from $b^{2}-4 a c>0$. Note that the statement $3 x^{2}+5 x-c x+1>0$ or starting with e.g. $\frac{1}{x}+5>-3 x+c$ would be an error.	A1*	
	Note: A minimum for (b) could be, $\begin{aligned} \frac{1}{x}+5=-3 x+c & \Rightarrow 3 x^{2}+5 x-c x+1(=0)(\mathrm{M} 1) \\ b^{2}>4 a c & \Rightarrow(5-c)^{2}>12(\mathrm{M} 1 \mathrm{~A} 1) \end{aligned}$ If $b^{2}>4 a c$ is not seen then $4 \times 3 \times 1$ needs to be seen explicitly.			
				(3)

(c)	$\begin{gathered} (5-c)^{2}=12 \Rightarrow(c=) 5 \pm \sqrt{12} \\ \quad \text { or } \\ (5-c)^{2}=12 \Rightarrow c^{2}-10 c+13=0 \\ \Rightarrow(c=) \frac{-10 \pm \sqrt{(-10)^{2}-4 \times 13}}{2} \end{gathered}$	M1: Attempts to find at least one critical value using the result in (b) or by expanding and solving a 3 TQ (See General Principles) (the " $=0$ " may be implied) A1: Correct critical values in any form. Note that $\sqrt{12}$ may be seen as $2 \sqrt{3}$.	M1A1
	$c<75-\sqrt{12} ", c>45+\sqrt{12}{ }^{\prime}$	Chooses outside region. The ' $0<$ ' can be ignored for this mark. So look for $c<$ their $5-\sqrt{12}$, $c>$ their $5+\sqrt{12}$. This could be scored from $5+\sqrt{12}<c<5-\sqrt{12}$ or $5-\sqrt{12}>c>5+\sqrt{12}$. Evidence is to be taken from their answers not from a diagram.	M1
	$0<c<5-\sqrt{12}, c>5+\sqrt{12}$	Correct ranges including the ' $0<$ ' e.g. answer as shown or each region written separately or e.g. $(0,5-\sqrt{12}),(5+\sqrt{12}, \infty)$. The critical values may be un-simplified but must be at least $\frac{10+\sqrt{48}}{2}, \frac{10-\sqrt{48}}{2}$. Note that $0<c<5-\sqrt{12} \text { and } c>5+\sqrt{12}$ would score M1A0.	A1
	Allow the use of \boldsymbol{x} rather than \boldsymbol{c} in (c) but the final answer must be in terms of \boldsymbol{c}.		
			(4)
			(11 marks)

(c)	$\mathrm{f}^{\prime}(3)=12 \times 3^{2}-16 \times 3-35$	Substitutes $x=3$ into their $\mathrm{f}^{\prime}(x)$ or the given $\mathrm{f}^{\prime}(x)$. Must be a changed function i.e. not into $\mathrm{f}(x)$.	M1
	$12 x^{2}-16 x-35=' 25 '$	Sets their $\mathrm{f}^{\prime}(x)$ or the given $\mathrm{f}^{\prime}(x)=$ their $\mathrm{f}^{\prime}(3)$ with a consistent f^{\prime}. Dependent on the previous method mark.	dM1
	$12 x^{2}-16 x-60=0$	$12 x^{2}-16 x-60=0$ or equivalent 3 term quadratic e.g. $12 x^{2}-16 x=60$. (A correct quadratic equation may be implied by later work). This is cso so must come from correct work - i.e. they must be using the given $\mathrm{f}^{\prime}(x)$.	A1 cso
	$(x-3)(12 x+20)=0 \Rightarrow x=\ldots$	Solves 3 term quadratic by suitable method - see General Principles. Dependent on both previous method marks.	ddM1
	$x=-\frac{5}{3}$	$x=-\frac{5}{3}$ oe clearly identified. If $x=3$ is also given and not rejected, this mark is withheld. (allow -1.6 recurring as long as it is clear i.e. a dot above the 6). This is cso and must come from correct work - i.e. they must be using the given $\mathrm{f}^{\prime}(x)$.	A1 cso
			(5)
			(11 marks)
Alt (b) Product rule.	$\mathrm{f}(x)=(2 x-5)^{2}(x+3) \Rightarrow \mathrm{f}^{\prime}(x)=(2 x-5)^{2} \times 1+(x+3) \times 4(2 x-5)$ M1: Attempts product rule to give an expression of the form $p(2 x-5)^{2}+q(x+3)(2 x-5)$ M1: Multiplies out and collects terms A1: $\mathrm{f}^{\prime}(x)=12 x^{2}-16 x-35^{*}$		M1 M1A1*

