edexcel "

Mark Scheme (Results)

January 2014

Pearson Edexcel International
Advanced Level
Core Mathematics C12 (WMA01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

J anuary 2014
Publications Code IA037660
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q), \text { where }|p q|=|c|, \quad \text { leading to } \mathrm{x}=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \quad \text { leading to } \mathrm{x}=\ldots
\end{aligned}
$$

2. Formula

Attempt to use the correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0, \quad$ leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($\left.x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. ($x^{n} \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme ${ }^{\text {a }}$ Marks
1.	$\left(2-\frac{x}{2}\right)^{6}=2^{6}+\binom{6}{1} 2^{5} \cdot\left(-\frac{x}{2}\right)+\binom{6}{2} 2^{4} \cdot\left(\frac{-x}{2}\right)^{2}+\ldots$ $=64,-96 x,+60 x^{2}+\ldots$$\|$M1 Special case $=64,-192\left(\frac{x}{2}\right),+240\left(\frac{x}{2}\right)^{2}+.$. This is correct but unsimplified M1B1A1A0
	4 marks
Alternative method	$\begin{array}{rl\|l} {\left[2^{6}\right]\left(1-\frac{x}{4}\right)^{6}=\left[2^{6}\right]\left(1+\binom{6}{1}\left(-\frac{x}{4}\right)\right.} & \left.+\binom{6}{2}\left(\frac{-x}{4}\right)^{2}+\ldots\right) & \text { M1 } \\ & =64,-96 x,+60 x^{2}+\ldots & \text { B1, A1, A1 } \end{array}$
	Notes
	M1: The method mark is awarded for an attempt at Binomial to get the second and/or third term - need correct binomial coefficient combined with correct power of x. Ignore bracket errors or errors (or omissions) in powers of 2 or sign or bracket errors. Accept any notation for ${ }^{6} C_{1}$ and ${ }^{6} C_{2}$, e.g. $\binom{6}{1}$ and $\binom{6}{2}$ (unsimplified) or 6 and 15 from Pascal's triangle This mark may be given if no working is shown, but either or both of the terms including x is correct. B1: must be simplified to 64 (writing just 2^{6} is $\mathbf{B 0}$). This must be the only constant term (do not isw here) A1: is cao and is for $-96 x$. The x is required for this mark. Allow $+(-96 x)$ A1: is cao and is for $60 x^{2}$ (can follow omission of negative sign in working) Any extra terms in higher powers of x should be ignored Isw if this is followed by $=16,-24 x,+15 x^{2}+\ldots$ Allow terms separated by commas and given as list Alternative Method M1: Does not require power of 2 to be accurate B1: If answer is left as $64\left(1+\binom{6}{1}\left(-\frac{x}{4}\right)+\binom{6}{2}\left(\frac{-x}{4}\right)^{2}+\ldots\right)$ Allow M1 B1 A0 A0

Question Number	Scheme	Marks
2.(a)	$\mathrm{f}^{\prime}(x)=-16 x^{-3}-2 x^{-\frac{1}{2}}+3 \text { or } \mathrm{f}^{\prime}(x)=-\frac{16}{x^{3}}-\frac{2}{\sqrt{x}}+3$	M1 A1 A1
(b)	$\int \mathrm{f}(x) \mathrm{d} x=-8 x^{-1}-\frac{4 x^{\frac{3}{2}}}{\underline{3}}+\frac{3 x^{2}}{7}-x+(c)$	M1 A1 A1
	$\int f(x) \mathrm{d} x=-8 x^{-1}-\frac{8 x^{\frac{3}{2}}}{3}+\frac{3 x^{2}}{2}-x+c \text { or } \frac{-8}{x}-\frac{8 x \sqrt{x}}{3}+\frac{3 x^{2}}{2}-x+c$	A1
		7 marks
	Notes	
(a) (b)	M1: Attempt to differentiate - power reduced $x^{n} \rightarrow x^{n-1}$ or $3 x$ becomes 3 A1: two correct terms (of the three shown). They may be unsimplified A1: fully correct and simplified then isw (any equivalent simplified form acceptable) M1: Attempt to integrate original $\mathrm{f}(x)$ - one power increased $x^{n} \rightarrow x^{n+1}$ A1: Two of the four terms in x correct unsimplified - (ignore lack of constant here) A1: Three terms correct unsimplified - (ignore lack of constant here) A1: All correct simplified with constant - allow $-1 x$ for $-x$ N.B Integrating answer to part (a) is M0	

Question Number	Scheme	Marks
3.	$\mathrm{f}(\mathrm{x})=10 x^{3}+27 x^{2}-13 x-12$	
(a)	Attempts $f(\pm 2)$ or $f(\pm 3) \quad$ Or Uses long division as far as a remainder	M1
	(i) $\{f(2)=\} \quad 150$ (ii) $\{\mathrm{f}(-3)=\} \quad 0$	
(b)	$10 x^{3}+27 x^{2}-13 x-12=(x+3)\left(10 x^{2}+\ldots\right.$	M1
	$10 x^{3}+27 x^{2}-13 x-12=(x+3)\left(10 x^{2}-3 x-4\right)$	A1
	"(10x $\left.{ }^{2}-3 x-4\right)$ " $=(a x+b)(c x+d)$ where $\|a c\|=10$ and $\|b d\|=4$	dM1
	$=(x+3)(5 x-4)(2 x+1)$	A1
		[4]
		7 marks
	Notes	
(a)	M1: As on scheme	
	A1: for 150, next A1: for 0 Both cao (If division has been used it should be clear that they know these values are the remainders)	
(b)	M1: Recognises $(x+3)$ is factor and obtains correct first term of quadratic factor by division or any other method	
	A1: Correct quadratic [may have been done in part (a)] dM1: Attempt to factorise their quadratic	
	A1: Need all three factors together, accept any correct equivalent e.g. $10(x+3)\left(x-\frac{4}{5}\right)\left(x+\frac{1}{2}\right)$	
	If the three roots of $\mathrm{f}(x)=0$ are given after correct factorisation then isw Special case. Just writes down the three factors $=(x+3)(5 x-4)(2 x+1)$ with no working : Full marks	
	Allow trial and error or use of calculator for completely correct answer - so 4 marks or 0 marks if "hence" is not used.	

Question Number	Scheme	Marks
4. (i)	$\begin{aligned} & \frac{4(2 \sqrt{2}+\sqrt{6})}{(2 \sqrt{2}-\sqrt{6})(2 \sqrt{2}+\sqrt{6})} \\ & (2 \sqrt{2}-\sqrt{6})(2 \sqrt{2}+\sqrt{6})=8-6=2 \end{aligned}$ $\sqrt{6}=\sqrt{2} \sqrt{3}$ used in numerator - may be implied by a correct factorisation of numerator	M1 B1 B1 A1 * [4] B1 B1 B1 * [3]
Alternat for (i)	Assume result and multiply both sides by $(2 \sqrt{2}-\sqrt{6})$ $(2 \sqrt{2}-\sqrt{6})(4 \sqrt{2}+2 \sqrt{6})=16-12=4$ So LHS = RHS and result is true	M1 B1 B1 A1 [4]
Alternativ for (ii)	$\frac{\sqrt{81}+\sqrt{21 \times 7 \times 3}-6}{\sqrt{3}}$ Or $\sqrt{81}+\sqrt{21 \times 7 \times 3}-6=8 \sqrt{3} \sqrt{3}$ $\frac{9+21-6}{\sqrt{3}}$ $9+21-6=$ $\frac{24}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=8 \sqrt{3}$ $9+21-6=24$ so equation is true	B1 B1 B1 [3] (7 marks)
	Notes	
(i) M1: Multiplies numerator and denominator by $\pm(2 \sqrt{2}+\sqrt{6})$ B1: correct treatment of denominator to give 2 (may be implied by answer obtained with no errors seen) B1: Splits $\sqrt{6}=\sqrt{2} \sqrt{3}$ - may be implied, but $\mathbf{B 0}$ for $2 \sqrt{6}=2 \sqrt{2}(2 \sqrt{3} \ldots) \quad$ A1 cao reaches result and no errors should be seen N.B. $\frac{4(2 \sqrt{2}+\sqrt{6})}{2}=2 \sqrt{2}(2+\sqrt{3})$ may be awarded B1 A1 as there is an implication that $\sqrt{6}=\sqrt{2} \sqrt{3}$ (ii) B1: expresses both of first two terms as multiple of root 3 correctly B1: rationalises denominator in second term -may not see working B1: has used $3 \sqrt{3}+7 \sqrt{3}-2 \sqrt{3}=8 \sqrt{3} \quad$ N.B. $3 \sqrt{3}+7 \sqrt{3}-\frac{6}{\sqrt{3}}=8 \sqrt{3}$ is B1B0B0		
(i) Alternative	M1: Assume result and multiply both sides by $(2 \sqrt{2}-\sqrt{6})$ $\mathbf{2}^{\text {nd }} \mathbf{B 1}$: Uses $\sqrt{2} \sqrt{3}=\sqrt{6} \quad \mathbf{1}^{\text {st }} \mathbf{B 1}$: Multiplies out these two brackets to give $4 \quad$ A1: conclusion	
(ii) Alternatives	B1: Uses common denominator or multiplies both sides by root 3 and obtains correct unsimplified equation B1: LHS numerator correctly simplified or just see $9+21-6$ B1: In the first alternative must see multiplication of numerator and denominator by $\sqrt{3}$ to give $8 \sqrt{3}$ In the second need statement LHS = RHS and so true	

Question Number	Scheme	Marks
(a)	$u_{2}=2-\frac{4}{3}=\frac{2}{3}, u_{3}=2-\frac{4}{\frac{2}{3}}=-4, u_{4}=2-\frac{4}{-4}=3$	M1 A1 A1
(b)		B1
(c)	$\begin{aligned} & \sum_{i=1}^{99} u_{i}=\left(3+\frac{2}{3}-4\right)+\left(3+\frac{2}{3}-4\right)+\left(3+\frac{2}{3}-4\right)+\ldots \\ & \sum_{i=1}^{99} u_{i}=33 \times(\ldots+\ldots+\ldots), \quad=-11 \end{aligned}$	M1 $\mathrm{A} 1, \mathrm{~A} 1$
		[3]
(c)	Alternative method for part (c) Adds $n \times 3$ " $+n \times$ " -4 " $+n \times \frac{2}{3}$ " Uses $n=33$ -11	M1
		$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$
		[3]
		7 marks
	Notes	
(a)	M1: Attempt to use formula correctly (implied by first term correct, or given as 0.67 , or third term following through from their second etc) A1: two correct answers A1: 3 correct answers (allow 0.6 recurring but not 0.667) Look for the values. Ignore the u_{r} label	
(b)	B1: cao (NB Use of AP is B0)	
(c)	M1: Uses sum of at least 3 terms found from part (a)) (may be implied by correct answer). Attempt to sum an AP here is M0. A1: obtains $33 \times$ (sum of three adjacent terms) or $11 \times$ (sum of nine adjacent terms) A1: - 11 cao (-11 implies both A marks) N.B. Use of $n=99$ is M1A0A0	

Question Number	Scheme	Marks
6.	$\log _{4} \frac{a}{b}=3$ or $\log _{4} a+\log _{4} b=\log _{4} 25$ or $\log _{4} \frac{a}{\frac{25}{a}}=3$ or $\log _{4} \frac{\frac{25}{b}}{b}=3$ (If this is preceded by wrong algebra (e.g. $\mathrm{b}=25-\mathrm{a}$) M 1 can still be given if their b is used $\log _{4} 64=3$ or $4^{3}=64 \quad$ (may be implied by the use of 64) or see $\log a=\frac{1}{2}(\log 25+3)$ become $a=4^{\frac{1}{2}(\log 25+3)}$ or see $\log b=\frac{1}{2}(\log 25-3)$ become $b=4^{\frac{1}{2}(\log 25-3)}$ (these latter two statements will be implied by correct answers) Correct algebraic elimination of a variable to obtain expression in a or b without logs $a=40 \text { or } b=\frac{5}{8}$ Substitutes to give second variable or solves again from start $a=40$ and $b=\frac{5}{8}$ and no other answers.	M1 B1 dM1 A1 dM1
		[6]
		6 marks
	Notes	
	M1: Uses addition or subtraction law correctly for logs (N.B. $\log _{4} a+\log _{4} b=25$ is M0) B1: See number 64 used (independent of M mark) or or see $\log a=\frac{1}{2}(\log 25+3)$ become $a=4^{\frac{1}{2}(\log 25+3)}$ or see $\log b=\frac{1}{2}(\log 25-3)$ become $b=4^{\frac{1}{2}(\log 25-3)}$ dM1: Dependent on first M mark. Eliminates a or b (with appropriate algebra) and eliminates logs A1: Either a or b correct dM1: Dependent on first M mark. Attempts to find second variable A1: Both a and b correct - allow $b=0.625$ If $a=-40$ and $b=-5 / 8$ are also given as answers lose the last A mark. NB Log $a+\log b=2.3219$..will not yield exact answers If they round their answers to 40 and 0.625 after decimal work, do not give final A mark. NB: Some will change the base of the \log and use $\log a-\log b=3 \log 4$	

Question Number	Scheme	Marks
7. (a) (b)	$12 \sin ^{2} x-\cos x-11=0$ $12\left(1-\cos ^{2} x\right)-\cos x-11=0 \text { and so } 12 \cos ^{2} x+\cos x-1=0 \text { * }$ Solve quadratic to obtain $(\cos x)=\frac{1}{4}$ or $-\frac{1}{3}$ $x=75.5,109.5,250.5,284.5$ Answers in radians (see notes)	B1 * [1] M1 A1 M1 A1cao [4]
		5 marks
	Notes	
(a) (b)	B1: Replaces $\sin ^{2} x$ by $\left(1-\cos ^{2} x\right)$ - or replace 11 by $11\left(\sin ^{2} x+\cos ^{2} x\right)$ and no errors seen to give printed answer including $=0$ M1: Solving the correct quadratic equation (allow sign errors), by the usual methods (see notes) - implied by correct answers A1: Both answers needed - allow 0.25 and awrt -0.33 M1 Uses inverse cosine to obtain two correct values for x for their values of $\cos x$ e.g. (75.5 and 109.4 or 109.5) or (75.5 and 284.5) or (109.5 and 250.5) - allow truncated answers or awrt here. A1: All four correct - allow awrt. Ignore extra answers outside range but lose last A mark for extra answers inside range Answers in radians are 1.3, 5.0, 1.9 and 4.4 Allow M1A0 for two or more correct asnwers	

Question Number	Scheme ${ }^{\text {a }}$ Marks
8.	$k x^{2}+8 x+2(k+7)=0$ Uses $b^{2}-4 a c$ with $a=k, b=8$ and attempt at $c=2(k+7)$ $b^{2}-4 a c=64-56 k-8 k^{2} \quad \text { or } 64=56 k+8 k^{2} \quad \text { o.e. }$ Attempts to solve " $k^{2}+7 k-8=0$ " to give $k=$ $\Rightarrow \text { Critical values, } k=1,-8$ Uses $b^{2}-4 a c<0$ or $b^{2}<4 a c$ or $4 a c-b^{2}>0$ $k^{2}+7 k-8>0 \quad \text { gives } \quad k>1 \text { (or) } k<-8$
	Notes
	M1: Attempts $b^{2}-4 a c$ for $a=k, b=8$ and $c=2(k+7)$ or attempt at c from quadratic $=0$ (may omit bracket or make sign slip or lose the 2 , so $2 k+7$ or $k+7$ for example) or uses quadratic formula to solve equation or uses on two sides of an equation or inequation A1: Correct three term quadratic expression for $b^{2}-4 a c-$ (may be under root sign) dM1: Uses factorisation, formula, or completion of square method to find two values for k, or finds two correct answers with no obvious method for their three term quadratic A1: Obtains 1 and -8 M1: states $b^{2}-4 a c<0$ or $b^{2}<4 a c$ anywhere (may be implied by the following work) M1: Chooses outside region ($k<$ Their Lower Limit $\quad k>$ Their Upper Limit) for appropriate 3 term quadratic inequality. Do not award simply for diagram or table. A1: $k>1$ or $k<-8$ - allow anything which clearly indicates these regions e.g. $(-\infty,-8)$ or $(1, \infty)$ $k>1, k<-8$ is A1 but $k>1$ and $k<-8$ is A0 but $x>1, x<-8$ is A0 (only lose 1 mark for using x instead of k) and $k \geq 1$ (or) $k \leq-8$ is A0 Also $1<k<-8$ is M1 A0 N.B. Lack of working: If there is no mention of $b^{2}-4 a c<0$ or $b^{2}<4 a c$ then just the correct answer $k>1, k<-8$ can imply the last M1M1A1 $k \geq 1, k \leq-8$ can imply M0M1A0 $k>1, k<-8$ can imply M1M1A0 Anything else needs to apply scheme

Question Number	Scheme	Marks
9.(a)	Uses $300 \times(1.05)^{23}$ Obtains 921 or 922 or 920	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(b)	Uses $S=\frac{300\left(1.05^{24}-1\right)}{1.05-1}$ Must have correct r and n but can use their a (e.g. 315)	M1
	13351 (accept awrt 13400)	A1
(c)	Uses $300(1.05)^{n-1}>3000 \quad$ Or $300(1.05)^{n-1}=3000$ $(n-1) \log 1.05>\log 10$ Or $(n-1) \log 1.05=\log 10$ Or $(n-1)=\log _{1.05} 10$ Or correct equivalent \log work ft $n>48.19 \quad N=49$	[2] M1 M1 A1
		[3]
		7 marks
	Notes	
(a)	M1: for correct statement of formula with correct a, r and n	
	A1: cao (This answer implies the M1)	
(b)	M1: Correct formula with $\mathrm{r}=1.05$ and $n=24 \mathrm{ft}$ their a (If they list all the terms - correct answer implies method mark)	
	A1: answers which round to 13400 are acceptable	
(c)	M1: Correct inequality or uses equality and interprets correctly later (ft their a) M1: Correct algebra then correct use of logs on their previous line (may follow use of $=$, or use of n instead of $n-1$) Can get M0M1A0 A1: need to see 49 or $49^{\text {th }}$ month	
	Special case: Uses sum formula: If they reach $(1.05)^{n}>1 \frac{1}{2}$ and then use logs correctly to give $n \log (1.05)>\log 1 \frac{1}{2}$ then give M0M1A0	
	If trial and error is used then the correct answer implies the method. So 49 is M1M1A1 and 48 scores M1M0A0. Similar marks follow answer only with no working.	

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme ${ }^{\text {a }}$ Marks

\hline 12. (a) \&

\hline \& Notes

\hline (a)
(b)

(c) \& | M1: Uses cosine rule - must be correct or other correct trigonometry e.g. $2 \times \theta$ where $\sin \theta=\frac{7.5}{10}$ |
| :--- |
| A1: makes cos subject of formula correctly or uses $2 \times \sin ^{-1}\left(\frac{7.5}{10}\right)$ |
| A1: accept awrt 1.696 (answer in degrees is A0). If answer is given as 1.70 (3sf) then A0 but remaining As are available (special case below) |
| M1: Uses $s=22 \theta$ with their θ in radians, or correct formula for degrees if working in degrees |
| A1: Accept awrt 37.3 (may be implied by their perimeter) |
| M1: Adds arc length to 15 to two further equal lengths for Perimeter |
| A1ft: Accept awrt 76.3 do not need metres ft on their arc length-so $39+$ arc length |
| B1: This formula used with their θ in radians or correct formula for degrees - allow miscopy of angle |
| B1: Correct formula for area - may use half base times height |
| M1: Subtracts correct triangle (two sides of length 10) from their sector |
| A1: awrt 361 - do not need units |
| Special case - uses 3 sf instead of 3 dp in part (a) |
| Loses final A mark in part (a) but can have A marks in part (b) for 37.4 and 76.4 and can have A mark in part |
| (c) for awrt 362 |

\hline
\end{tabular}

Question Number	Scheme	Marks
13. (a)	So $y=3 x-34+\frac{75}{x}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=3-75 x^{-2}+\{0\} \quad(x>0) \quad$ Accept $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}-75}{x^{2}}$ or equivalent	B1 M1 A1
(b)	$\begin{aligned} & \text { Put } \frac{\mathrm{d} y}{\mathrm{~d} x}=3-75 x^{-2}=0 \\ & x=5 \end{aligned}$	M1 A1 M1 A1
(c)	Substitute to give $y=-4$ Consider $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=150 x^{-3}>0$ So minimum	[4] M1 A1
(d)	When $x=2.5, y=3.5$ Also gradient of curve found by substituting 2.5 into their $\frac{\mathrm{d} y}{\mathrm{~d} x} \quad(=-9)$ So gradient of normal is $-\frac{1}{m}\left(=\frac{1}{9}\right)$ Either : $y-" 3.5 "=" \frac{1}{9} "(x-2.5) \quad$ or: $y=" \frac{1}{9} " x+c$ and "3.5" $=" \frac{1}{9} "(2.5)+c \Rightarrow c=" 3 \frac{2}{9} "$ So $\quad \underline{x-9 y+29=0}$ or $9 y-x-29=0$ or any multiple of these answers	B1 M1 dM1 dM1 A1
		$\begin{gathered} 14 \\ \text { marks } \\ \hline \end{gathered}$
	Notes	
(a) (b)	B1: any correct equivalent 3 or 4 term polynomial M1: Evidence of differentiation following attempt at division, or at multiplication by x^{-1}, so $x^{n} \rightarrow x^{n-1}$ at least once so $x^{1} \rightarrow 1$ or x^{0} or $x^{-1} \rightarrow x^{-2}$ not just $-34 \rightarrow 0$ A1: $3-75 x^{-2}$ Both terms correct, and simplified. Allow even if 34 was incorrect. Do not need to include domain $x>0$ M1: Puts $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ A1: Ignore extra answer $x=-5$ M1: Substitute into their $y=$ to find y A1: Ignore extra answer -64 M1: Considers second derivative (by reducing by 1 a power of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$) and consider its sign, or considers gradient either side, or considers shape of curve A1: Has correct second derivative*, has positive value for x (may not be used) and has stated >0 or equivalent and concludes "minimum" * Allow even if 3 was incorrect in first derivative. B1: cao M1: Substitutes 2.5 into their gradient function (may not get -9) dM1: Finds perpendicular gradient dM1: Equation of normal using their normal gradient, using $x=2.5$ and their value for y. This depends on both previous method marks (Use of $(5,-4)$ here is M0) A1: Must have $=0$ and integer coefficients	
(c) (d)		

Question Number	Scheme	Marks
14. (a) (b)	$\begin{aligned} & 2 x-3=x^{2}-2 x-15 \quad \text { so } x^{2}-4 x-12=0 \\ & x=6 \text { or } x=-2 \\ & y=9 \text { or } y=-7 \\ & \int x^{2}-2 x-15 \mathrm{~d} x=\frac{1}{3} x^{3}-x^{2}-15 x \end{aligned}$ Line meets x-axis at $x=1 \frac{1}{2}$ (may be implied by use in limits or in triangle area) and curve meets axis at $x=5$. These numbers may appear on the diagram. Uses correct combination of correct areas. Area of region = Area of large triangle MINUS $\left[\frac{1}{3} x^{3}-x^{2}-15 x\right]_{5}^{6}$ Area of large triangle $=\frac{1}{2} \times\left(6-1 \frac{1}{2}\right) \times 9$ (may use rectangle - trapezium $)$ $\begin{aligned} & =\frac{1}{2} \times\left(6-1 \frac{1}{2}\right) \times 9-\left[\left(\frac{1}{3} 6^{3}-6^{2}-15 \times 6\right)-\left(\frac{1}{3}(5)^{3}-(5)^{2}-15 \times(5)\right)\right] \\ & =20.25-\left(-54-\left(-58 \frac{1}{3}\right)\right)=\frac{191}{12}=15 \frac{11}{12} \end{aligned}$	M1 dM1 A1 dM1 A1 [5] B1 B1 B1 M1 dM1 M1 A1 [7] (12 marks)
	First Alternative method using "line - curve" and adding small triangle $\int-x^{2}+4 x+12 \mathrm{~d} x=-\frac{x^{3}}{3}+2 x^{2}+12 x \text { or } \int x^{2}-4 x-12 \mathrm{~d} x=\frac{x^{3}}{3}-2 x^{2}-12 x$ Line meets x-axis at $x=1 \frac{1}{2}$ and curve meets axis at $x=5$ Uses correct combination of correct areas. Area of region $=$ Area of small triangle PLUS $\left[-\frac{1}{3} x^{3}+2 x^{2}+12 x\right]_{5}^{6}$ Area of small triangle $=\frac{1}{2} \times\left(5-1 \frac{1}{2}\right) \times 7$ $\begin{aligned} & \frac{1}{2} \times\left(5-1 \frac{1}{2}\right) \times 7+\left[\left(-\frac{1}{3} 6^{3}+2 \times 6^{2}+12 \times 6\right)-\left(-\frac{1}{3}(5)^{3}+2 \times(5)^{2}+12 \times(5)\right)\right] \\ & =12.25+\left(72-\left(68 \frac{1}{3}\right)\right)=\frac{191}{12}=15 \frac{11}{12} \end{aligned}$	B1 B1 B1 M1 dM1 M1 A1 [7]
	Alternative method using "line - curve" (long method here and unlikely) First three B marks as in First Alternative Then $\begin{aligned} & \int_{1 \frac{1}{2}}^{6}-x^{2}+4 x+12 \mathrm{~d} x \pm \int_{1 \frac{1}{2}}^{5} x^{2}-2 x-15 \mathrm{~d} x \\ & \int_{1 \frac{1}{2}}^{5} x^{2}-2 x-15 \mathrm{~d} x \end{aligned}$ Uses limits correctly $50 \frac{5}{8}-34 \frac{17}{24}=15 \frac{11}{12}$	B1 B1 B1 M1 dM1 M1 A1

| (a) | Notes for Question 14 |
| :---: | :--- | :--- |
| (b) | M1: Puts equations equal
 dM1 Solves quadratic to obtain $x=$
 A1: both answers correct
 dM1: finds $y=$
 A1: both correct |
| B1: Correct integration of one of the quadratic expression (given in the mark scheme) to give one of the given
 cubic expression (ignore limits). Allow correct answer even if terms not collected nor simplified. Sign errors
 subtracting in alternative methods before integration gain B0
 B1: Line intersection correct (see 1.5)
 B1: curve intersection correct (see 5)
 M1: Uses correct combination of correct areas (allow numerical slips) so
 (i)Area of triangle using their " 6 " - their "1.5" times their "9" MINUS area beneath curve between their 5 and their 6
 (ii) Area of triangle using their " 5 " their "1.5" times their "7" PLUS area between curves between their 5 and their 6
 (iii) Subtracts area below axis from area between curves
 THEIR 1.5 must NOT BE ZERO!
 M1: Attempts second area (so area of a triangle relevant to the method- or integral of the linear function
 with relevant limits- or integral of original quadratic in second alternative method)
 M1: Uses their limits (even zero) correctly on any cubic expression (subtracting either way round) Can be
 given for wrong limits or for wrong areas. No evidence of substitution of limits is M0
 A1: Final answer - not decimal - cso | |

| | Notes for Question $\mathbf{1 5}$ |
| :---: | :--- | :--- |
| (a) | M1: States gradient equation or uses correctly
 A1: 4/3 or 8/6 or decimal equivalent
 M1: Uses midpoint formula, or implied by y coordinate of 7.
 A1: (3, 7) cao
 B1: : Uses negative reciprocal follow through their gradient
 M1: Line equation with their midpoint and perpendicular gradient
 A1: correct at any stage may be unsimplified, isw. Should be linear.
 (c)
 M1: Substitute $y=10$ into line equation to give $x=$
 A1: cao (Answer only with no working may have M1A1)
 M1:Finds radius or diameter or r^{2} using any valid method - probably distance from centre to one of the
 points. Need not state $r=$
 A1: for any equivalent $r^{2}=50$ or $r=\sqrt{50}$ etc. Their numeric answer must be identified. If they halve it or
 double it, this is M1 A0.
 M1: Attempt to use a true equation for circle with their centre and their radius or the letter r - allow sign slips
 in brackets. Do not allow use of r instead of r^{2} in the equation
 A1ft: correct work ft their centre and genuine attempt at radius
 A1: correct and given in this form
 Alternative methods
 Do not need to write out equation at the end $a=2, b=-20$ and $c=51$ is sufficient. |

