

# Mark Scheme (Final)

# October 2019

Pearson Edexcel International Advanced Level in Core Mathematics C12 (WMA01/01)

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

#### Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

October 2019 Publications Code WMA01\_01\_MS\_1910 All the material in this publication is copyright © Pearson Education Ltd 2019

#### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

# www.igexams.com EDEXCEL IAL MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 125.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- **\*** The answer is printed on the paper or ag- answer given
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Marks for each question are scored by clicking in the marking grids that appear below each student response on ePEN. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

|     | 0 | 1 |
|-----|---|---|
| aM  |   | • |
| aA  | • |   |
| bM1 |   | • |
| bA1 | • |   |
| bB  | • |   |
| bM2 |   | • |
| bA2 |   | • |

9. Be careful when scoring a response that is either all correct or all incorrect. It is very easy to click down the '0' column when it was meant to be '1' and all correct.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

#### Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where  $|pq| = |c|$ , leading to  $x = ...$   
 $(ax^{2} + bx + c) = (mx + p)(nx + q)$ , where  $|pq| = |c|$  and  $|mn| = |a|$ , leading to  $x = ...$ 

#### 2. Formula

Attempt to use the <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving 
$$x^2 + bx + c = 0$$
:  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to  $x = \dots$ 

#### Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ( $x^n \rightarrow x^{n-1}$ )

2. Integration

Power of at least one term increased by 1. ( $x^n \rightarrow x^{n+1}$ )

#### Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

#### Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

#### Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

#### **Misreading a question**

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

| Question |                                                                                                                                                                                                                                  |           |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Number   | Scheme                                                                                                                                                                                                                           | Marks     |
| 1        | $\int \left(\frac{1}{2x^3} + 3x^{\frac{1}{2}} - 6\right) dx = \int \left(\frac{1}{2}x^{-3} + 3x^{\frac{1}{2}} - 6\right) dx$                                                                                                     |           |
|          | $= -\frac{1}{4}x^{-2} + 2x^{\frac{3}{2}} - 6x + c$                                                                                                                                                                               |           |
|          | For raising any power by one.<br>Scored for any correct index including $-6 \rightarrow -6x$                                                                                                                                     | M1        |
|          | For one correct term simplified <b>or unsimplified</b> including – 6x<br>Unsimplified examples:                                                                                                                                  |           |
|          | $=\frac{-\frac{1}{2}x^{-2}}{-2}, \frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$                                                                                                                                                           |           |
|          | Allow equivalent simplified terms e.g.<br>$-\frac{1}{4x^2}$ for $-\frac{1}{4}x^{-2}$ , $2x\sqrt{x}$ or $2\sqrt{x^3}$ for $2x^{\frac{3}{2}}$                                                                                      |           |
|          | For two correct terms simplified                                                                                                                                                                                                 | A1        |
|          | $-\frac{1}{4}x^{-2} + 2x^{\frac{3}{2}} - 6x + c$<br>or exact <b>simplified</b> equivalent all on one line including the "+ c" and<br>apply isw once the correct answer is seen<br>Ignore any spurious integral signs and/or dx's | A1        |
|          |                                                                                                                                                                                                                                  | [4]       |
|          |                                                                                                                                                                                                                                  | (4 marks) |

| This is for any fully correct linear equation (no inexact decimals from logs)<br>(not follow through here)ePENNote that this is an M mark on ePENCorrect answer and no other values.<br>Allow equivalent exact fractions<br>e.g. $\frac{4}{14}$ but not $\frac{-2}{-7}$ .AlcsNote that this mark is cso so cannot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks                 | ne                                                                                                                                                                                                                                                                                                                                                       | Scher                                                                                                                                                                                                                                                                                                            | Question<br>Number |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Also accept $a = 4x + 2$ or equivalent e.g. $a = 2(2x+1)$<br>Apply isw once a correct answer is seen.(b)Examples:<br>$2^x \times 4^{2x+1} = 2^x \times 2^{4x+2^x}$<br>or<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | Accept either $2^{2(2x+1)}$ or $2^{4x+2}$                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  | 2(a)               |
| (b)<br>Examples:<br>$2^{x} \times 4^{2x+1} = 2^{x} \times 2^{4x+2^{2}} = 2^{x+4x+2^{2}}$ or<br>$4^{\frac{1}{2}x} \times 4^{2x+1} = 4^{\frac{1}{2}x+12x+1}$ or<br>$16^{\frac{1}{2}x} \times 16^{\frac{1}{2}(2x+1)} = 16^{\frac{1}{2}x+\frac{1}{2}(2x+1)}$ or<br>$16^{\frac{1}{2}x} \times 16^{\frac{1}{2}(2x+1)} = 16^{\frac{1}{2}x+\frac{1}{2}(2x+1)}$ or<br>$16^{\frac{1}{2}x} = 4^{\frac{1}{2}x+3}$ or $2^{12x}$ or<br>$16^{3x} = 4^{2x3x}$ or $4^{6x}$<br>Examples:<br>$2^{x+4x+2} = 2^{4x+3} \times 16^{\frac{1}{2}x+\frac{1}{2}} = 16^{3x}, 16^{\frac{1}{2}x+\frac{1}{2}} = 16^{3x}, 2^{4x+2} = 2^{11x}$<br>Any correct equation or correct follow through from their answer to part (a) in<br>the form $nt^{1(x)} = nt^{\frac{4}{2}x+2x+1} = 2^{12x}, 2^{5x+2} = 16^{3x}, 16^{\frac{1}{2}x+\frac{1}{2}} = 16^{3x}, 2^{4x+2} = 2^{11x}$<br>Any correct equation or correct follow through from their answer to part (a) in<br>the form $nt^{1(x)} = nt^{\frac{4}{2}x+1}$ is seen in (a), score B I and then allow M1A1ft in (b) if<br>$2^{\frac{2^{4x+1}}{2}} = 2^{4x+1}$ is used in (b)<br>Examples:<br>$5x+2 = 12x, \frac{1}{2}x+2x+1=6x, \frac{1}{4}x+x+\frac{1}{2} = 3x, 4x+2 = 11x$<br>This is for any fully correct linear equation (no inexact decimals from logs)<br>(not follow through here)<br>Note that this is an M mark on ePEN<br>$x = \frac{2}{7}$<br>Note that this mark is cos so cannot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1                    | but <b>not</b> $(2^2)^{(2x+1)}$ unless followed by $2^{2(2x+1)}$ or $2^{4x+2}$                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                  |                    |
| (b)<br>Examples:<br>$2^{x} \times 4^{2x+1} = 2^{x} \times 2^{4x+2^{x}} = 2^{x+4x+2^{x}}$ or<br>$4^{\frac{1}{2}^{x}} \times 4^{2x+1} = 4^{\frac{1}{2}^{x+2x+1}} = 2^{x+4x+2^{x}}$ or<br>$4^{\frac{1}{2}^{x}} \times 4^{\frac{1}{2}^{x+1}} = 4^{\frac{1}{2}^{x+2x+1}}$ or<br>$16^{\frac{1}{4}^{x}} \times 16^{\frac{1}{2}(2x+1)} = 16^{\frac{1}{4}x+\frac{1}{2}(2x+1)}$ or<br>$16^{\frac{1}{3}^{x}} = 2^{4x3x}$ or $2^{12x}$ or<br>$16^{3x} = 4^{2x3x}$ or $4^{6x}$<br>$16^{3x} = 4^{2x3x}$ or $4^{6x}$<br>$16^{3x} = 4^{2x3x}$ or $4^{6x}$<br>$16^{3x} = 4^{2x3x}$ or $4^{6x}$<br>$16^{3x} = 2^{4xx}, 4^{\frac{1}{2}^{x+2x+1}} = 2^{12x}, 2^{5x+2} = 16^{3x}, 16^{\frac{1}{2}^{x+1}} = 16^{\frac{1}{2}^{2x+1}}$<br>Condone invisible brackets for this<br>mark e.g. $4^{2x+1} = 16^{\frac{1}{2}^{2x+1}}$<br>$2^{x+4x+2} = 2^{4x3x}, 4^{\frac{1}{2}^{x+2x+1}} = 2^{12x}, 2^{5x+2} = 16^{3x}, 16^{\frac{1}{2}^{x+1}} = 16^{3x}, 2^{4x+2} = 2^{11x}$<br>Any correct equation or correct follow through from their answer to part (a) in<br>the form $m^{1(x)} = n^{\frac{1}{2}^{1x}}$ which may be implied by their equation below<br>Note that it is not necessary that $m = n$<br>If 'isw' has been applied in (a), mark positively and allow this mark if possible<br>e.g. if $2^{2(2x+1)} = 2^{4x+1}$ is seen in (a), score B1 and then allow M1A1ft in (b) if<br>$2^{4x+1}$ is used in (b)<br>Examples:<br>$5x+2 = 12x, \frac{1}{2}x+2x+1=6x, \frac{1}{4}x+x+\frac{1}{2}=3x, 4x+2=11x$<br>This is for any fully correct linear equation (no inexact decimals from logs)<br>(not follow through here)<br>Note that this is an M mark on ePEN<br>$x = \frac{2}{7}$<br>Note that this mark is cos os cannot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | aivalent e.g. $a = 2(2x+1)$                                                                                                                                                                                                                                                                                                                              | Also accept $a = 4x + 2$ or equ                                                                                                                                                                                                                                                                                  |                    |
| $\frac{\mathbf{Examples:}}{\mathbf{r} + 2^{x} + 2^{x+2^{x}} = 2^{x^{x}/4x+2^{x}}} \text{ or } \mathbf{r} + 2^{\frac{1}{2}x} + 2^{\frac{1}{2}x+2^{x+1}} \text{ or } \mathbf{r} + 2^{\frac{1}{2}x} + 2^{\frac{1}{2}x+2^{x+1}} = 4^{\frac{1}{2}x+2^{x+1}} \text{ or } \mathbf{r} + 2^{\frac{1}{2}x^{x}} + 2^{\frac{1}{2}x+2^{x+1}} = 16^{\frac{1}{2}x+\frac{1}{2}(2x+1)} \text{ or } \mathbf{r} + 16^{\frac{1}{2}x+\frac{1}{2}(2x+1)} = 16^{\frac{1}{2}x+\frac{1}{2}(2x+1)} \text{ or } \mathbf{r} + 16^{\frac{1}{2}x+\frac{1}{2}(2x+1)} = 16^{\frac{1}{2}x+\frac{1}{2}(2x+1)} \text{ or } \mathbf{r} + 16^{\frac{1}{2}x+\frac{1}{2}(2x+1)} \text{ or } \mathbf{r} + 16^{\frac{1}{2}x+\frac{1}{2}(2x+1)} = 16^{\frac{1}{2}x+\frac{1}{2}} \text{ or } \mathbf{r} + 16^{\frac{1}{2}x+\frac{1}{2}} = 16^{\frac{1}{2}x}, 16^{\frac{1}{2}x+\frac{1}{2}} = 16^{\frac{1}{2}x+1} \text{ Condone invisible brackets for this mark e.g. 4^{2x+3x} or 4^{6x}\frac{\mathbf{Examples:}}{2^{x+4x+2}} = 2^{4x3x}, 4^{\frac{1}{2}x+2x+1} = 2^{12x}, 2^{5x+2} = 16^{3x}, 16^{\frac{5}{2}x+\frac{1}{2}} = 16^{3x}, 2^{4x+2} = 2^{11x}} \text{ Any correct equation or correct follow through from their answer to part (a) in the form m^{(x)} = m^{g(x)} which may be implied by their equation below Note that it is not necessary that m = n If 'isw' has been applied in (a), mark positively and allow this mark if possible e.g. if 2^{2(2x+1)} = 2^{4x+1} is used in (b)\frac{\mathbf{Examples:}}{5x+2=12x, \frac{1}{2}x+2x+1=6x, \frac{1}{4}x+x+\frac{1}{2}=3x, 4x+2=11x} \text{ A1} (\mathbf{MI} + \mathbf{MI}) This is for any fully correct linear equation (no inexact decimals from logs) (not follow through here) Note that this is an M mark on OPEN \Rightarrow x = \frac{2}{7} Note that this is an M mark on conter values. Allow equivalent exact fractions e.g. \frac{4}{14} but not \frac{-2}{-7}. Note that this mark is cos so cannot be a the transment on the cos and the transment is cos so cannot be the cos and the co$ | [1]                   | ect answer is seen.                                                                                                                                                                                                                                                                                                                                      | Apply isw once a corr                                                                                                                                                                                                                                                                                            | -                  |
| Examples:<br>$2^{x+4x+2} = 2^{4x3x}, 4^{\frac{1}{2}x+2x+1} = 2^{12x}, 2^{5x+2} = 16^{3x}, 16^{\frac{5}{4}x+\frac{1}{2}} = 16^{3x}, 2^{4x+2} = 2^{11x}$<br>Any correct equation or correct follow through from their answer to part (a) in<br>the form $m^{f(x)} = n^{g(x)}$ which may be implied by their equation below<br>Note that it is not necessary that $m = n$<br>If 'isw' has been applied in (a), mark positively and allow this mark if possible<br>e.g. if $2^{2(2x+1)} = 2^{4x+1}$ is seen in (a), score B1 and then allow M1A1ft in (b) if<br>$2^{4x+1}$ is used in (b)A1ftExamples:<br>$5x+2=12x, \frac{1}{2}x+2x+1=6x, \frac{1}{4}x+x+\frac{1}{2}=3x, 4x+2=11x$<br>(M1<br>ePE1A1<br>(M1<br>ePE1Correct linear equation (no inexact decimals from logs)<br>(not follow through here)Note that this is an M mark on ePENCorrect answer and no other values.<br>Allow equivalent exact fractions<br>e.g. $\frac{4}{14}$ but not $\frac{-2}{-7}$ .<br>Note that this mark is cso so cannot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [1]<br>M1             | A correct application of the<br>addition law on the lhs. Follow<br>through on their $4x + 2$ but if they<br>use bases other than 2 then the<br>powers must be correct.<br><b>Or</b><br>A correct application of the<br>multiplication law on the rhs. As in<br>(a) must be e.g. $2^{4\times 3x}$ not $(2^4)^{3x}$<br>Condone invisible brackets for this | or<br>$4^{\frac{1}{2}x} \times 4^{2x+1} = 4^{\frac{1}{2}x+2x+1}$ or<br>$16^{\frac{1}{4}x} \times 16^{\frac{1}{2}(2x+1)} = 16^{\frac{1}{4}x+\frac{1}{2}(2x+1)}$ or<br>$16^{3x} = 2^{4\times 3x} \text{ or } 2^{12x}$ or                                                                                           | (b)                |
| $5x+2=12x, \frac{1}{2}x+2x+1=6x, \frac{1}{4}x+x+\frac{1}{2}=3x, 4x+2=11x$ This is for any <b>fully correct</b> linear equation (no inexact decimals from logs) (not follow through here)<br>Note that this is an M mark on ePEN Correct answer and no other values.<br>Allow equivalent exact fractions<br>e.g. $\frac{4}{14}$ but not $\frac{-2}{-7}$ .<br>Note that this mark is cso so cannot Alcow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1ft                  | bles:<br>= $16^{3x}$ , $16^{\frac{5}{4}x+\frac{1}{2}} = 16^{3x}$ , $2^{4x+2} = 2^{11x}$<br>arough from their answer to part (a) in<br><b>implied by their equation below</b><br>cessary that $m = n$<br>itively and allow this mark if possible<br>e B1 and then allow M1A1ft in (b) if                                                                  | $2^{x+4x+2} = 2^{4\times 3x}, \ 4^{\frac{1}{2}x+2x+1} = 2^{12x}, \ 2^{5x+2}$<br>Any correct equation or correct follow the the form $m^{f(x)} = n^{g(x)}$ which may be<br>Note that it is <b>not</b> ne<br>If 'isw' has been applied in (a), mark pose<br>e.g. if $2^{2(2x+1)} = 2^{4x+1}$ is seen in (a), score |                    |
| $\Rightarrow x = \frac{2}{7}$ Correct answer and no other values.<br>Allow equivalent exact fractions<br>e.g. $\frac{4}{14}$ but not $\frac{-2}{-7}$ .<br>Note that this mark is cso so cannot<br>Alcs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1<br>(M1 on<br>ePEN) | $\frac{1}{4}x + x + \frac{1}{2} = 3x, 4x + 2 = 11x$<br>ition (no inexact decimals from logs)<br><b>rough here</b> )                                                                                                                                                                                                                                      | $5x + 2 = 12x, \frac{1}{2}x + 2x + 1 = 6x, \frac{1}{2}x + 1 = 6x$<br>This is for any <b>fully correct</b> linear equation (not follow the                                                                                                                                                                        |                    |
| decimals have been used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1cso<br>[4]          | Correct answer and no other values.<br>Allow equivalent exact fractions<br>e.g. $\frac{4}{14}$ but not $\frac{-2}{-7}$ .<br>Note that this mark is cso so cannot<br>be 'recovered' once inexact                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                  | -                  |

| www.igevams.com                                                                    |
|------------------------------------------------------------------------------------|
| Beware this incorrect solution has been seen in (b) that gives the correct answer: |
|                                                                                    |
| $2^{x} \times 4^{2x+1} = 16^{3x} \Longrightarrow 2^{x} \times 2^{4x+2} = 16^{3x}$  |
| $\Rightarrow 4^{5x+2} = 16^{3x}$                                                   |
| $\Rightarrow (5x+2) \times 4 = 3x \times 16$                                       |
| $\Rightarrow 20x + 8 = 48x$                                                        |
| $\Rightarrow x = \frac{2}{7}$                                                      |
| $\rightarrow x - \frac{1}{7}$                                                      |
|                                                                                    |
| ( = No marks)                                                                      |

| (b)   | Examples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Way 2 | $\log_{(2)} \left( 2^{x} \times 4^{2x+1} \right) = \log_{(2)} 2^{x} + \log_{(2)} 4^{2x+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
|       | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
|       | $\log_{(2)} 16^{3x} = 3x \log_{(2)} 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1                   |
|       | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
|       | $\log_{(2)}\left(2^{x} \times 4^{2x+1}\right) = \log_{(2)}\left(2^{x} \times 2^{4x+2}\right) = \log_{(2)}\left(2^{5x+2}\right) = (5x+2)\log_{(2)}2^{5x+2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
|       | Takes log of each side <b>and</b> uses the addition law <b>or</b> the power law of lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
|       | (Ignore presence or absence of bases and condone missing brackets)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
|       | Examples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|       | $x \log_{(2)} 2 + (2x+1) \log_{(2)} 4 = 3x \log_{(2)} 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|       | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
|       | $(5x+2)\log_{(2)} 2 = 3x\log_{(2)} 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1ft                 |
|       | Correct equation or correct follow through from their answer to part (a)<br>powers "brought down" (Ignore presence or absence of bases). Do no<br>condone missing brackets unless subsequent work implies their presen-<br>May be implied by their equation below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ot                   |
|       | Examples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|       | $x+2(2x+1)=3x\times 4, 5x+2=12x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1                   |
|       | This is for any fully correct linear equation (no inexact decimals from lo (not follow through here)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ogs) (M1 on<br>ePEN) |
|       | Note that this is an M mark on ePEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
|       | $\Rightarrow x = \frac{2}{7}$ Correct answer and no other value of the constant of the cons |                      |
|       | Note that this mark is cso so ca<br>be 'recovered' once inexact<br>decimals have been used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | annot                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (5 marks)            |

| Question<br>Number | Sch                                                                                                      | leme                                                                                           | Marks       |
|--------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------|
| 3(a)               | $f(2) = 4 \times 8 - 4k + 2k \times 2 + 8 =$                                                             | Attempts $f(\pm 2) =$<br>Accept sign slips in substitution.                                    | M1          |
|                    | $f(2) = 40 \neq 0 \Longrightarrow (x - 1)$                                                               | 2)/it is not a factor*                                                                         |             |
|                    |                                                                                                          | Dr                                                                                             |             |
|                    |                                                                                                          | (x-2)/ it is not a factor*                                                                     |             |
|                    | States $f(2) = 40$ (or $4 \times 8 + 8$ ) $\neq 0 \Rightarrow (x - 2)/it$ is not a factor. There must be |                                                                                                | A1*         |
|                    | no errors or incorrect statements inclu-                                                                 | uding $f(2) = 4 \times 8 - 4k + 2k \times 2 + 8 = 0$                                           |             |
|                    |                                                                                                          | 0 (allow e.g. 40 > 0 so not a factor)                                                          |             |
|                    | Or states <b>remainder</b> is 40 or 4>                                                                   | $(8+8 \operatorname{so}(x-2)/\operatorname{it} \operatorname{is not} \operatorname{a factor})$ |             |
|                    | Altownative by                                                                                           | long division.                                                                                 | [2]         |
|                    |                                                                                                          | v long division:                                                                               |             |
|                    | × ×                                                                                                      | -k)x+16                                                                                        |             |
|                    | $(x-2)\overline{ 4x^3-kx^2+2kx+8}$                                                                       |                                                                                                |             |
|                    | $4x^3 - 8x^2$                                                                                            |                                                                                                |             |
|                    | (8-                                                                                                      | $\overline{k}x^2+2kx+8$                                                                        |             |
|                    | (8 –                                                                                                     | $k\big)x^2-2\big(8-k\big)x$                                                                    | M1          |
|                    | 16x + 8                                                                                                  |                                                                                                |             |
|                    |                                                                                                          | 16x - 32                                                                                       |             |
|                    |                                                                                                          | 40                                                                                             |             |
|                    | the numerator and a                                                                                      | obtain a 3 term quadratic expression in a constant remainder                                   |             |
|                    | $40 \neq 0$ so $(x - 2)$ is not a factor or e.g.                                                         | There must be no errors or incorrect statements and <b>there must be a</b>                     | A1          |
|                    | Remainder is 40 so not a factor                                                                          | <b>reference to</b> $\neq 0$ or a reference to<br>their being a <b>remainder</b> as above      |             |
| (b)                | $f\left(\frac{1}{2}\right) = 6.25$                                                                       | Attempts $f(\pm 0.5)$ and sets equal to $\frac{25}{4}$ . Accept sign slips in substitution.    | M1          |
|                    | $\frac{3}{4}k = -\frac{9}{4} \Longrightarrow k = \dots$                                                  | Collects terms and solves a linear equation in <i>k</i> . Dependent on the previous mark.      | <b>d</b> M1 |
|                    | k = -3                                                                                                   | Cao (only this answer)                                                                         | A1          |
|                    |                                                                                                          |                                                                                                | [3]         |

Note that attempts at long division in (b) gets messy but apply the following:

M1: A full attempt to divide  $4x^3 - kx^2 + 2kx + 8$  by (2x - 1) to give a remainder that is a linear expression in k and sets the remainder  $= \frac{25}{4}$  (NB correct remainder is  $\frac{17}{2} + \frac{3k}{4}$ ) **d**M1: Solves their linear equation in k A1: k = -3

| (c) | $f(-2) = 4(-2)^{3} - ("-3")(-2)^{2} + 2("-3")(-2) + 8 =$<br>Attempts f(±2) with their numerical k                                                                                                                                                                                                                                                                                           | M1        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     | $f(-2) = 0 \Rightarrow (x+2)$ is a factor * Fully correct solution with conclusion                                                                                                                                                                                                                                                                                                          | A1*       |
|     | $4(-2)^{3} - (-3)(-2)^{2} + 2(-3)(-2) + 8 = 0$ so it is a factor scores M1A1<br>but the A mark should be withheld for incorrect notation that is not recovered<br>e.g. $4 \times -2^{3} - (-3) \times -2^{2} + 2(-3)(-2) + 8 = 0$ therefore it is a factor<br>scores M1A0<br>but $4 \times -2^{3} - (-3) \times -2^{2} + 2(-3)(-2) + 8$<br>= -32 + 12 + 12 + 8 = 0 therefore it is a factor |           |
|     | scores M1A1                                                                                                                                                                                                                                                                                                                                                                                 | [2]       |
|     | Alternative by long division:                                                                                                                                                                                                                                                                                                                                                               | ["        |
|     | $4x^{2}-5x+4$ $(x+2)\overline{ 4x^{3}+3x^{2}-6x+8}$ $4x^{3}+8x^{2}$ $-5x^{2}-6x+8$ $-5x^{2}-10x$ $4x+8$ $4x+8$ $4x+8$ $(0)$                                                                                                                                                                                                                                                                 | M1        |
|     | Attempts long division with their k and $(x + 2)$ to obtain a 3 term quadratic<br>expression in the numeratorso $(x + 2)$ /it is a factorFully correct work and conclusion.<br>Note that it is not necessary to see the<br>"0" at the end of the division.                                                                                                                                  | A1        |
|     |                                                                                                                                                                                                                                                                                                                                                                                             | (7 marks) |

| Question<br>Number | Sch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | heme                                                                                         | Marks        |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------|
| 4(a)               | $y = 16x\sqrt{x} - 3x^2 - 78 = 16x^{\frac{3}{2}} - 3x^2 - 78$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                              |              |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $4x^{\frac{1}{2}}-6x$                                                                        |              |
|                    | Correct index for either term in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x so $16x\sqrt{x} \to \alpha x^{\frac{1}{2}}$ or $-3x^2 \to \beta x$                         | M1           |
|                    | Any one term correct and simpl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | liftied e.g. $24x^{\frac{1}{2}}$ (or $24\sqrt{x}$ ) or $-6x$                                 | A1           |
|                    | $\left(\frac{\mathrm{d}y}{\mathrm{d}x}=\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $24x^{\frac{1}{2}}-6x$                                                                       |              |
|                    | Correct expression with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | no 'extra' terms e.g. '+ c'                                                                  | A1           |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $24x^{\frac{1}{2}}$ and allow $-6x^{1}$                                                      |              |
| -                  | Apply isw once a c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | correct answer is seen                                                                       | [3]          |
| (b)                | $x = 4 \Longrightarrow y = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | States or uses $y = 2$                                                                       | B1           |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Substitutes $x = 4$ into their $\frac{dy}{dx}$                                               | M1           |
| -                  | $m_{N} = -\frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}} = \left(-\frac{1}{24}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Correct method for finding gradient of normal. <b>Dependent on the previous method mark.</b> | <b>d</b> M1  |
|                    | E.g. $y - "2" = " - \frac{1}{24}"(x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-4$ ) or $\frac{y-"2"}{x-4} = "-\frac{1}{24}"$                                              |              |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or                                                                                           |              |
|                    | $y = mx + c \Longrightarrow "2" =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $"-\frac{1}{24}"\times 4 + c \Longrightarrow c = \dots$                                      | <b>dd</b> M1 |
|                    | Correct method for findin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g the equation of the normal                                                                 |              |
|                    | with $x = 4$ and their $y = 2$ , where $y = 2$ , whe | hich has come from an attempt                                                                |              |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , correctly placed.                                                                          |              |
| -                  | Dependent on both p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | revious method marks.<br>x+24y-52=0 or                                                       |              |
|                    | x + 24y - 52 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\pm k\left(x+24y-52\right)=0,  k\in\mathbb{N}$                                              | A1           |
|                    | x + 2 + y = 52 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Must see the equation not just values<br>of a, b, c stated.                                  |              |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>, ~, <del>v</del> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>                               | [5]          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                              | (8 marks)    |

| Question     | 0                                                                                                                                                                                                                                    | xams.com                                                                                                                                                                  | Marks |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Number       |                                                                                                                                                                                                                                      |                                                                                                                                                                           |       |
| 5(a)         | $QR^2 = \left(2x\right)^2 + \left(2x\right)^2$                                                                                                                                                                                       | Attempts Pythagoras' Theorem.<br>Condone omission of brackets e.g.<br>$QR^2 = 2x^2 + 2x^2$                                                                                | M1    |
|              | $\Rightarrow (QR =)\sqrt{8}x \text{ or } 2\sqrt{2}x \text{ or } 2x\sqrt{2}$                                                                                                                                                          | Correct expression.<br>Do <b>not</b> allow $\sqrt{8x^2}$ or $2\sqrt{2x^2}$ or $2\sqrt{2x}$ with the vinculum clearly encompassing the <i>x</i> .                          | A1    |
|              | No w                                                                                                                                                                                                                                 | vorking:                                                                                                                                                                  |       |
|              | $(QR =) 2\sqrt{2}x$ or $\sqrt{2}$                                                                                                                                                                                                    | $\sqrt{8}x$ scores both marks                                                                                                                                             |       |
|              | $(QR=)2\sqrt{2x^2}$ or                                                                                                                                                                                                               | $\sqrt{8x^2}$ scores M1A0                                                                                                                                                 |       |
|              |                                                                                                                                                                                                                                      |                                                                                                                                                                           | [2]   |
| (a)<br>Way 2 | $\sin 45 = \frac{2x}{QR} \Longrightarrow QR = \frac{2x}{\sin 45}$ $= \frac{2x}{\sqrt{2}}$                                                                                                                                            | Correct trigonometry (may use cos) to<br>find <i>QR</i> including use of<br>$\sin 45$ or $\cos 45 = \frac{1}{\sqrt{2}}$                                                   | M1    |
|              | $\Rightarrow (QR =)\sqrt{8}x \text{ or } 2\sqrt{2}x$                                                                                                                                                                                 | Correct expression.<br>Do not allow $\sqrt{8x^2}$ or $2\sqrt{2x^2}$                                                                                                       | A1    |
| (b)          | $3(x+7) = 4x + 2\sqrt{2}x'$                                                                                                                                                                                                          |                                                                                                                                                                           |       |
|              | Sets perin<br>The lhs side must be correct and th                                                                                                                                                                                    | $x+7 = 2x+2x+2\sqrt{2}x'$<br>meters equal.<br>he rhs is $4x$ + their answer to part (a).<br>on an incorrect <i>QR</i> .                                                   | M1    |
|              | Note that if the candidate now cha                                                                                                                                                                                                   | nges to decimals, they are unlikely to subsequent marks                                                                                                                   |       |
|              | Collects terms in $x$ and reaches (a constant and a surd term but condom                                                                                                                                                             | $(2\sqrt{2})x = 21$<br>.) $x =$ where () is exact and contains ne missing brackets if they are implied by wise they must be present.                                      | M1    |
|              | $x = \frac{21}{(1+2\sqrt{2})} \text{ or } x = \frac{21}{(1+\sqrt{8})}$<br>Correct intermediate answer which may be implied if both the previous marks have been awarded and a correct final answer of $6\sqrt{2} - 3$ is seen later. |                                                                                                                                                                           | A1    |
|              | $\Rightarrow x = \frac{21}{\left(2\sqrt{2}+1\right)} \times \frac{\pm \left(2\sqrt{2}-1\right)}{\pm \left(2\sqrt{2}-1\right)}$                                                                                                       |                                                                                                                                                                           |       |
|              |                                                                                                                                                                                                                                      | Correct method to rationalise the denominator of their expression which must<br>be a 2-term expression<br>Given the wording in the question, the method must be shown but |       |
|              | Correct method to rationalise the deno<br>be a 2-terr<br><b>Given the wording in the questi</b>                                                                                                                                      | m expression<br>ion, the method must be shown but                                                                                                                         | M1    |
|              | Correct method to rationalise the deno<br>be a 2-tern<br>Given the wording in the questi<br>condone invisible brack                                                                                                                  | m expression                                                                                                                                                              | A1    |

| 5(b)<br>Way 2 | Sets perin<br>The lhs side must be correct and th                                                       | $4x + 2\sqrt{2}x'$<br>neters equal.<br><b>The rhs is <math>4x</math> + their answer to part (a)</b> .<br>on an incorrect $QR$ . | M1 |
|---------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----|
|               | e                                                                                                       | es to decimals, they are unlikely to score bsequent marks                                                                       |    |
|               | $\Rightarrow 21 - x = 2\sqrt{2}x$ $\Rightarrow x^2 - 42x + 441 = 8x^2$                                  | Collects terms in <i>x</i> and constant to one side and squares                                                                 | M1 |
|               | $\Rightarrow 7x^2 + 42x - 441 = 0$                                                                      | Correct 3 term quadratic                                                                                                        | Al |
|               | $\Rightarrow 7x^2 + 42x - 441 = 0$ $\Rightarrow x = \frac{-42 \pm \sqrt{42^2 + 4(7)(441)}}{2 \times 7}$ | Solves using the quadratic formula<br>(usual rules). <b>Working must be seen</b> .                                              | M1 |
|               | $\Rightarrow x = 6\sqrt{2} - 3$                                                                         | cso $x = 6\sqrt{2} - 3$ only (or $-3 + 6\sqrt{2}$ )                                                                             | Al |

| www.igexams.com    |                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                       | Marks |
| 6(a)               | $\left(1 - \frac{1}{4}x\right)^{12} = 1 + 12\left(-\frac{1}{4}x\right) + \frac{12 \times 11}{2 \times 1} \times \left(-\frac{1}{4}x\right)^2 + \frac{12 \times 11 \times 10}{3 \times 2 \times 1} \times \left(-\frac{1}{4}x\right)^3 + \dots$<br>Award for a correct binomial coefficient and a correct power of $\pm \frac{1}{4}x$ for term<br>three and/or term 4, condening the emission of the breekets |       |
|                    | three and/or term 4, condoning the omission of the brackets.<br>E.g. allow $\frac{12 \times 11 \times 10}{3!} \times \frac{1}{4} x^3$ for term 4                                                                                                                                                                                                                                                             | M1    |
|                    | Accept any notation for binomial coefficients e.g. as above or:<br>${}^{12}C_2$ , ${}^{12}C_3$ , $\begin{pmatrix} 12\\2 \end{pmatrix}$ , $\begin{pmatrix} 12\\3 \end{pmatrix}$ or 66 or 220 from Pascal's triangle.                                                                                                                                                                                          |       |
|                    | For $1-3x$ (Allow $-\frac{3x}{1}$ for $-3x$ )                                                                                                                                                                                                                                                                                                                                                                | B1    |
|                    | $= \underbrace{1-3x}_{8} + \frac{33}{8}x^{2} - \frac{55}{16}x^{3} + \dots$ For either $+ \frac{33}{8}x^{2}$ or $-\frac{55}{16}x^{3}$                                                                                                                                                                                                                                                                         | A1    |
|                    | For both $+\frac{33}{8}x^2$ and $-\frac{55}{16}x^3$                                                                                                                                                                                                                                                                                                                                                          | A1    |
|                    | Allow equivalent fractions/full decimals for $\frac{33}{8}$ and $-\frac{55}{16}$                                                                                                                                                                                                                                                                                                                             |       |
|                    | E.g. $4\frac{1}{8}$ or 4.125 for $\frac{33}{8}$ and $-3\frac{7}{16}$ or $-3.4375$ for $-\frac{55}{16}$                                                                                                                                                                                                                                                                                                       |       |
|                    | Note that the $+\frac{33}{8}x^2$ can score from $+\frac{1}{4}x$ used in the expansion.                                                                                                                                                                                                                                                                                                                       |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                              | [4]   |

| (b)(i) Coefficient of $x^2$ of $(2+x)\left(1-\frac{1}{4}x\right)^{12}$ is $2x\frac{33}{8}+1x-3=\frac{21}{4}$<br>For attempting $2\times$ <i>thetr</i> $\frac{33}{8}+1\times$ <i>their</i> $-3$ (allow <u>one</u> sign error) M1<br>Note that this may be seen embedded within a complete expansion provided the <u>coefficients are combined as indicated</u><br>$\frac{21}{4}\left(\text{ or } 5\frac{1}{4}, 5.25\right)$ oc (Allow $x^2=\frac{21}{4}$ )<br>Note that $\left[\frac{21}{4}\right]x^2$ can be taken that their coefficient is $\frac{21}{4}$<br>The coefficient must be clearly "extracted" for this mark but see special case note below<br>(ii) Coefficient of $x^2$ of $\frac{(2+x)}{2x}\left(1-\frac{1}{4}x\right)^{12}$ is $1\times-\frac{55}{16}+\frac{1}{2}\times\frac{33}{8}=-\frac{11}{8}$<br>For attempting $1\times$ <i>their</i> $-\frac{55}{16}+\frac{1}{2}\times$ <i>their</i> $\frac{33}{8}$ (allow <u>one</u> sign error) M1<br>Note that this may be seen embedded within a complete expansion provided the <u>coefficients are combined as indicated</u><br>$A1: -\frac{11}{8}\left(\text{ or } -1\frac{3}{8}, -1.375\right)$ oc (Allow $x^2 = -\frac{11}{8}$ )<br>Note that $\left[-\frac{11}{8}\right]x^2$ can be taken that their coefficient is $-\frac{11}{8}$ A1<br>The coefficient must be clearly "extracted" for this mark but see special case note below<br>In (ii), if $\frac{(2+x)}{2x}$ is "processed" incorrectly e.g. as $(2+x)2x^{-1}$ , then unless<br>there is a recovery M0A0 is very likely<br>Special Case:<br>If the $x^2$ s are included with the coefficients then penalise this once only and at the first occurrence. [4]                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 1                                                                                                                                                            |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| For attempting $2 \times metr - \frac{1}{8} + 1 \times metr - 3$ (allow one sign error)Note that this may be seen embedded within a complete expansion provided the<br>coefficients are combined as indicated $\frac{21}{4} \left( \text{ or } 5\frac{1}{4}, 5.25 \right)$ oe (Allow $x^2 = \frac{21}{4} \right)$ A1Note that $\left[ \frac{21}{4} \right] x^2$ can be taken that their coefficient is $\frac{21}{4}$ The coefficient must be clearly "extracted" for this mark but see special case note below(ii)Coefficient of $x^2$ of $\frac{(2+x)}{2x} \left( 1 - \frac{1}{4} x \right)^{12}$ is $1 \times -\frac{55}{16} + \frac{1}{2} \times \frac{33}{8} = -\frac{11}{8}$ For attempting $1 \times their -\frac{55}{16} + \frac{1}{2} \times their \frac{33}{8}$ (allow one sign error)Note that this may be seen embedded within a complete expansion provided the<br>coefficients are combined as indicatedA1: $-\frac{11}{8} \left( \text{ or } -1\frac{3}{8}, -1.375 \right)$ oc (Allow $x^2 = -\frac{11}{8} \right)$ Note that $\left[ -\frac{11}{8} \right] x^2$ can be taken that their coefficient is $-\frac{11}{8} \right)$ Note that $\left[ -\frac{11}{2} \right] x^2$ can be taken that their coefficient is $-\frac{11}{8} \right)$ Note that $\left[ -\frac{11}{2} \right] x^2$ can be taken that their coefficient is $-\frac{11}{8} \right)$ Note that $\left[ -\frac{11}{2} \right] x^2$ can be taken that their coefficient is $-\frac{11}{8} \right)$ Note that $\left[ -\frac{11}{2} \right] x^2$ can be taken that their coefficient is $-\frac{11}{8} \right)$ If the coefficient must be clearly "extracted" for this mark but see special case note belowIn (ii), if $\frac{(2+x)}{2x}$ is "processed" incorrectly e.g. as $(2+x)2x^{-1}$ , then unless <u>Special Case:</u> If the $x^2$ s are incl                                                                                                                                                                                                                                                                        | (b)(i) | Coefficient of $x^2$ of $(2+x)\left(1-\frac{1}{4}x\right)^{12}$ is $2\times\frac{33}{8}+1\times-3=\frac{21}{4}$                                              |           |
| (ii)<br>Coefficients are combined as indicated<br>$\frac{21}{4} \left( \text{ or } 5\frac{1}{4}, 5.25 \right) \text{ oc } (\text{Allow } x^2 = \frac{21}{4})$ Note that $\left[\frac{21}{4}\right] x^2$ can be taken that their coefficient is $\frac{21}{4}$ The coefficient must be clearly "extracted" for this mark but see special case note below<br>(ii)<br>Coefficient of $x^2$ of $\frac{(2+x)}{2x} \left( 1 - \frac{1}{4}x \right)^{1/2}$ is $1 \times -\frac{55}{16} + \frac{1}{2} \times \frac{33}{8} = -\frac{11}{8}$ For attempting $1 \times their -\frac{55}{16} + \frac{1}{2} \times their \frac{33}{8}$ (allow <u>one</u> sign error)<br>Note that this may be seen embedded within a complete expansion provided the coefficients are combined as indicated<br>A1: $-\frac{11}{8} \left( \text{ or } -1\frac{3}{8}, -1.375 \right)$ oe (Allow $x^2 = -\frac{11}{8}$ )<br>Note that $\left[ -\frac{11}{8} \right] x^2$ can be taken that their coefficient is $-\frac{11}{8}$<br>The coefficient must be clearly "extracted" for this mark but see special case note below<br>In (ii), if $\frac{(2+x)}{2x}$ is "processed" incorrectly e.g. as $(2+x)2x^{-1}$ , then unless<br>there is a recovery MOA0 is very likely<br>If the $x^2$ s are included with the coefficients then penalise this once only and at the first occurrence. [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | For attempting $2 \times their \frac{33}{8} + 1 \times their - 3$ (allow <u>one</u> sign error)                                                              | M1        |
| (ii)A1Note that $\left[\frac{21}{4}\right]x^2$ can be taken that their coefficient is $\frac{21}{4}$ (ii)Coefficient must be clearly "extracted" for this mark but see special case note below(iii)Coefficient of $x^2$ of $\frac{(2+x)}{2x} \left(1-\frac{1}{4}x\right)^{12}$ is $1\times-\frac{55}{16}+\frac{1}{2}\times\frac{33}{8}=-\frac{11}{8}$ M1Note that this may be seen embedded within a complete expansion provided the coefficients are combined as indicatedA1: $-\frac{11}{8} \left[ \text{ or } -1\frac{3}{8}, -1.375 \right]$ oe (Allow $x^2 = -\frac{11}{8}$ )Note that $\left[-\frac{11}{8}\right]x^2$ can be taken that their coefficient is $-\frac{11}{8}$ A1The coefficient must be clearly "extracted" for this mark but see special case note belowIn (ii), if $\frac{(2+x)}{2x}$ is "processed" incorrectly e.g. as $(2+x)2x^{-1}$ , then unlessthere is a recovery MOA0 is very likelySpecial Case:If the $x^2$ s are included with the coefficients then penalise this once only and at the first occurrence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                                                                                              |           |
| Note that $\left \frac{21}{4}\right x^2$ can be taken that their coefficient is $\frac{21}{4}$ The coefficient must be clearly "extracted" for this mark but see special case note below(ii)x^2 of $\frac{(2+x)}{2x}\left(1-\frac{1}{4}x\right)^{1^2}$ is $1\times-\frac{55}{16}+\frac{1}{2}\times\frac{33}{8}=-\frac{11}{8}$ x^2 of $\frac{2+x}{2x}\left(1-\frac{1}{4}x\right)^{1^2}$ is $1\times-\frac{55}{16}+\frac{1}{2}\times\frac{33}{8}=-\frac{11}{8}$ x^2 of $\frac{2+x}{16}+\frac{1}{2}\times their\frac{33}{8}$ (allow one sign error)-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{2x}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}-\frac{11}{2x}-\frac{11}{2x}-\frac{11}{2x}-\frac{11}{8}-\frac{11}{8}-\frac{11}{8}<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | $\frac{21}{4}$ (or $5\frac{1}{4}$ , 5.25) oe (Allow $x^2 = \frac{21}{4}$ )                                                                                   |           |
| (ii)<br>Coefficient of $x^2$ of $\frac{(2+x)}{2x} \left(1 - \frac{1}{4}x\right)^{12}$ is $1 \times -\frac{55}{16} + \frac{1}{2} \times \frac{33}{8} = -\frac{11}{8}$<br>For attempting $1 \times their -\frac{55}{16} + \frac{1}{2} \times their \frac{33}{8}$ (allow <u>one</u> sign error)<br>Note that this may be seen embedded within a complete expansion provided the <u>coefficients are combined as indicated</u><br>A1: $-\frac{11}{8} \left( \text{or } -1\frac{3}{8}, -1.375 \right)$ oe (Allow $x^2 = -\frac{11}{8}$ )<br>Note that $\left[ -\frac{11}{8} \right] x^2$ can be taken that their coefficient is $-\frac{11}{8}$<br>The coefficient must be clearly "extracted" for this mark but see special case note below<br>In (ii), if $\frac{(2+x)}{2x}$ is "processed" incorrectly e.g. as $(2+x)2x^{-1}$ , then unless<br>there is a recovery MOA0 is very likely<br><u>Special Case:</u><br>If the $x^2$ s are included with the coefficients then penalise this once only and at the first occurrence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                              | A1        |
| Coefficient of $x^2$ of $\frac{(2+x)}{2x} \left[ 1 - \frac{1}{4}x \right]$ is $1 \times -\frac{55}{16} + \frac{1}{2} \times \frac{33}{8} = -\frac{11}{8}$ M1For attempting $1 \times their -\frac{55}{16} + \frac{1}{2} \times their \frac{33}{8}$ (allow one sign error)Note that this may be seen embedded within a complete expansion provided the<br>coefficients are combined as indicatedA1: $-\frac{11}{8} \left[ \text{ or } -1\frac{3}{8}, -1.375 \right]$ oe (Allow $x^2 = -\frac{11}{8}$ )Note that $\left[ -\frac{11}{8} \right] x^2$ can be taken that their coefficient is $-\frac{11}{8}$ A1The coefficient must be clearly "extracted" for this mark but see special case note belowIn (ii), if $\frac{(2+x)}{2x}$ is "processed" incorrectly e.g. as $(2+x)2x^{-1}$ , then unlessIf the $x^2$ s are included with the coefficients then penalise this once only and at<br>the first occurrence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | The coefficient must be clearly "extracted" for this mark but see special case note below                                                                    |           |
| Note that this may be seen embedded within a complete expansion provided the<br>coefficients are combined as indicatedA1: $-\frac{11}{8} \left( \text{ or } -1\frac{3}{8}, -1.375 \right)$ oe (Allow $x^2 = -\frac{11}{8}$ )Note that $\left[ -\frac{11}{8} \right] x^2$ can be taken that their coefficient is $-\frac{11}{8}$ The coefficient must be clearly "extracted" for this mark but see special case note belowIn (ii), if $\frac{(2+x)}{2x}$ is "processed" incorrectly e.g. as $(2+x)2x^{-1}$ , then unlessthere is a recovery M0A0 is very likelyIf the $x^2$ s are included with the coefficients then penalise this once only and at<br>the first occurrence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ii)   | Coefficient of $x^2$ of $\frac{(2+x)}{2x} \left(1 - \frac{1}{4}x\right)^{12}$ is $1 \times -\frac{55}{16} + \frac{1}{2} \times \frac{33}{8} = -\frac{11}{8}$ |           |
| coefficients are combined as indicatedA1: $-\frac{11}{8} \left( \text{ or } -1\frac{3}{8}, -1.375 \right)$ oe (Allow $x^2 = -\frac{11}{8}$ )Note that $\left[ -\frac{11}{8} \right] x^2$ can be taken that their coefficient is $-\frac{11}{8}$ The coefficient must be clearly "extracted" for this mark but see special case note belowIn (ii), if $\frac{(2+x)}{2x}$ is "processed" incorrectly e.g. as $(2+x)2x^{-1}$ , then unlessthere is a recovery M0A0 is very likelySpecial Case:If the $x^2$ s are included with the coefficients then penalise this once only and at the first occurrence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | For attempting $1 \times their - \frac{55}{16} + \frac{1}{2} \times their \frac{33}{8}$ (allow <u>one</u> sign error)                                        | M1        |
| coefficients are combined as indicatedA1: $-\frac{11}{8} \left( \text{ or } -1\frac{3}{8}, -1.375 \right)$ oe (Allow $x^2 = -\frac{11}{8}$ )Note that $\left[ -\frac{11}{8} \right] x^2$ can be taken that their coefficient is $-\frac{11}{8}$ The coefficient must be clearly "extracted" for this mark but see special case note belowIn (ii), if $\frac{(2+x)}{2x}$ is "processed" incorrectly e.g. as $(2+x)2x^{-1}$ , then unlessthere is a recovery M0A0 is very likelySpecial Case:If the $x^2$ s are included with the coefficients then penalise this once only and at the first occurrence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | Note that this may be seen embedded within a complete expansion provided the                                                                                 |           |
| A1: $-\frac{11}{8} \left( \text{ or } -1\frac{3}{8}, -1.375 \right)$ oe (Allow $x^2 = -\frac{11}{8}$ )A1Note that $\left[ -\frac{11}{8} \right] x^2$ can be taken that their coefficient is $-\frac{11}{8}$ A1The coefficient must be clearly "extracted" for this mark but see special case note belowA1In (ii), if $\frac{(2+x)}{2x}$ is "processed" incorrectly e.g. as $(2+x)2x^{-1}$ , then unlessA1there is a recovery M0A0 is very likelySpecial Case:If the $x^2$ s are included with the coefficients then penalise this once only and at the first occurrence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                                                                                                                                              |           |
| Image: |        |                                                                                                                                                              |           |
| In (ii), if $\frac{(2+x)}{2x}$ is "processed" incorrectly e.g. as $(2+x)2x^{-1}$ , then unless<br>there is a recovery M0A0 is very likely<br><u>Special Case:</u><br>If the $x^2$ s are included with the coefficients then penalise this once only and at<br>the first occurrence. [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | Note that $\left  -\frac{11}{8} \right  x^2$ can be taken that their coefficient is $-\frac{11}{8}$                                                          | A1        |
| 2.2         there is a recovery M0A0 is very likely         Special Case:         If the x <sup>2</sup> s are included with the coefficients then penalise this once only and at the first occurrence.         [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | The coefficient must be clearly "extracted" for this mark but see special case note below                                                                    |           |
| Special Case:         If the x <sup>2</sup> s are included with the coefficients then penalise this once only and at the first occurrence.         [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | In (ii), if $\frac{(2+x)}{2x}$ is "processed" incorrectly e.g. as $(2+x)2x^{-1}$ , then unless                                                               |           |
| Special Case:         If the x <sup>2</sup> s are included with the coefficients then penalise this once only and at the first occurrence.         [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | there is a recovery M0A0 is very likely                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | Special Case:If the $x^2$ s are included with the coefficients then penalise this once only and at                                                           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                                                                                              | [4]       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                                                                                              | (8 marks) |

Note that if 
$$+\frac{1}{4}x$$
 rather than  $-\frac{1}{4}x$  is consistently used in (a) then the corresponding coefficients in b(i) and (ii) are  $\frac{45}{4}$  and  $\frac{11}{2}$  respectively. (For reference)

| Question<br>Number | Scheme                                                                                                                |                                                                                                                                       |     |     |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--|--|--|
| 7(a)               | $\frac{\sin ACB}{4x} = \frac{\sin 30^{\circ}}{3x}$                                                                    | Attempts the sine rule with the sides and angles in the correct places                                                                | M1  |     |  |  |  |
|                    | $\sin ACB = \frac{0.5 \times 4x}{3x} = \frac{2}{3}*$                                                                  | Proceeds without errors to given<br>answer with at least one intermediate<br>line of working.                                         | A1* |     |  |  |  |
|                    |                                                                                                                       |                                                                                                                                       |     | [2] |  |  |  |
| (a)<br>Way 2       | $\frac{\frac{2}{3}}{4x} = \frac{\sin 30^{\circ}}{3x} \Longrightarrow \frac{\frac{2}{3}}{4x} = \frac{\frac{1}{2}}{3x}$ | Attempts the sine rule with the sides<br>and angles in the correct places and<br>replaces $\sin ACB$ by 2/3 and $\sin 30$ by<br>1/2   | M1  |     |  |  |  |
|                    | $2x = 2x$ so $\sin ACB = \frac{2}{3}$                                                                                 | Correct working to achieve both sides equal <b>and</b> conclusion                                                                     | A1  |     |  |  |  |
|                    | <u>N</u>                                                                                                              | otes:                                                                                                                                 |     |     |  |  |  |
|                    | Score M1A1 for $\sin ACB = \frac{4\sin 30^\circ}{3} = \frac{2}{3}$                                                    |                                                                                                                                       |     |     |  |  |  |
|                    | Score M1A0 for $\frac{\sin ACB}{4x} = \frac{\sin 3x}{3x}$                                                             |                                                                                                                                       |     |     |  |  |  |
|                    | Score M0A0 for $ACB = 41.81$ .                                                                                        |                                                                                                                                       |     |     |  |  |  |
|                    |                                                                                                                       |                                                                                                                                       |     | [2] |  |  |  |
| (b)                | (Obtuse $ACB = 180 - \left(\sin^{-1}\left(\frac{2}{3}\right)\right)$                                                  |                                                                                                                                       |     |     |  |  |  |
|                    |                                                                                                                       | ore how it is referenced i.e. just look for the calculation                                                                           |     |     |  |  |  |
|                    | (Angle $ABC =$ ) awrt 11.81°                                                                                          | Awrt 11.81° (Must be seen in (b))                                                                                                     | A1  |     |  |  |  |
|                    | Note that in (a) and (d) the M m                                                                                      | $au_{1}$ and $au_{2}$ and $bu_{1}$ for using $APC$ as                                                                                 |     | [2] |  |  |  |
|                    | 41.81 if the candidate clearly thin                                                                                   | arks are available for using <i>ABC</i> as<br>nks that this is <i>ABC</i> – this may be seen<br>: is clearly their answer to part (b) |     |     |  |  |  |
| (c)                | _                                                                                                                     | Attempts to use Area of triangle                                                                                                      |     |     |  |  |  |
|                    | $20 = \frac{1}{2}4x \times 3x \times \sin'11.81'$                                                                     | formula $\frac{1}{2}ab\sin C$ with $A = 20, 4x, 3x$                                                                                   | M1  |     |  |  |  |
|                    |                                                                                                                       | and their 11.81°                                                                                                                      |     |     |  |  |  |
|                    | $^{2}$ 16.20                                                                                                          | Proceeds using correct arithmetic and fully correct numbers $t_{a} = \frac{2}{2}$                                                     | JM1 |     |  |  |  |
|                    | $x^2 = 16.29$                                                                                                         | fully correct processing to $x^2 =$<br>Dependent on previous mark.                                                                    | dM1 |     |  |  |  |
|                    | <i>x</i> = 4.04                                                                                                       | Awrt 4.04                                                                                                                             | A1  |     |  |  |  |
|                    |                                                                                                                       |                                                                                                                                       |     | [3] |  |  |  |

| (d) | Attempts the cosine rule <b>to obtain a value for</b> <i>AC</i> :                                                           |           |
|-----|-----------------------------------------------------------------------------------------------------------------------------|-----------|
|     | $AC^{2} = (4 \times "4.04")^{2} + (3 \times "4.04")^{2} - 2 \times (4 \times "4.04")(3 \times "4.04")\cos("11.81")^{\circ}$ |           |
|     | $\Rightarrow AC = \dots$                                                                                                    |           |
|     | Condone poor bracketing e.g. $4 \times "4.04"^2$ rather than $(4 \times "4.04")^2$                                          |           |
|     | Or uses area to obtain a value for AC:                                                                                      |           |
|     | Uses $\frac{1}{2} \times 4$ " x " $\times AC \sin 30^\circ = 20 \Longrightarrow AC =$                                       | M1        |
|     | Or sine rule to obtain a value for AC:                                                                                      |           |
|     | $\frac{AC}{\sin"11.81"} = \frac{3 \times "x"}{\sin 30^{\circ}} \Longrightarrow AC = \dots$                                  |           |
|     | $\sin"11.81" - \sin 30^\circ \longrightarrow 10^\circ - \dots$                                                              |           |
|     | or                                                                                                                          |           |
|     | $\frac{AC}{\sin"11.81"} = \frac{4 \times "x"}{\sin(TheirACB)} \Longrightarrow AC = \dots$                                   |           |
|     | $\frac{1}{\sin^2 11.81^{"}} - \frac{1}{\sin(TheirACB)} \rightarrow AC - \dots$                                              |           |
|     | $\Rightarrow AC = 4.96$                                                                                                     |           |
|     | Awrt 4.96 (allow also awrt 4.95) This comes from                                                                            | A 1       |
|     | $\frac{1}{2} \times 4"x" \times AC \sin 30^\circ = 20 \implies AC = \frac{20}{x} = \frac{20}{4.04} = 4.95$                  | A1        |
|     |                                                                                                                             | [2]       |
|     |                                                                                                                             | (9 marks) |

#### Typical responses if acute ACB is used:

(b):  

$$ACB = \sin^{-1}\left(\frac{2}{3}\right) = 41.81... \Rightarrow ABC = 180 - (30 + 41.81..) = 108.19... \text{ M0A0}$$
(c):  

$$\frac{1}{2}4x \times 3x \times \sin'108.19...' = 20 \text{ M1}$$

$$x^{2} = 3.508... \text{ M1}$$

$$x = 1.87... \text{ A0}$$

(d):  

$$AC^{2} = (4 \times 1.87...)^{2} + (3 \times 1.87...)^{2} - 2 \times (4 \times 1.87...)(3 \times 1.87...)\cos(108.19...)^{\circ} = 10.6... \text{ M1A0}$$

$$\frac{1}{2} \times 4(1.87...) \times AC\sin 30^{\circ} = 20 \Rightarrow AC = 10.6... \text{ M1A0}$$

$$\frac{AC}{\sin^{*}108.19...^{*}} = \frac{3 \times "x"}{\sin 30^{\circ}} \Rightarrow AC = 10.6... \text{ M1A0}$$

$$\frac{AC}{\sin^{*}108.19...^{*}} = \frac{4 \times "x"}{\sin 41.81...} \Rightarrow AC = 10.6... \text{ M1A0}$$

| Question | 0                                                                                                                                                                                                                   | xams.com                                                                                                                                                                                        | Marks     |  |  |  |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Number   | So                                                                                                                                                                                                                  | Scheme                                                                                                                                                                                          |           |  |  |  |  |  |  |
| 8(a)     |                                                                                                                                                                                                                     | Attempts to complete the square.                                                                                                                                                                |           |  |  |  |  |  |  |
|          | $(x\pm 3)^2 + (y\pm 7)^2 \dots = \dots$                                                                                                                                                                             | Accept $(x \pm 3)^2 + (y \pm 7)^2 \dots = \dots$ as                                                                                                                                             | M1        |  |  |  |  |  |  |
|          |                                                                                                                                                                                                                     | evidence. Also score for $(\pm 3, \pm 7)$                                                                                                                                                       |           |  |  |  |  |  |  |
|          | Centre = (3,7)                                                                                                                                                                                                      | (3,7) or $x = 3, y = 7$                                                                                                                                                                         | Al        |  |  |  |  |  |  |
|          |                                                                                                                                                                                                                     | 1                                                                                                                                                                                               | [2]       |  |  |  |  |  |  |
| (b)      |                                                                                                                                                                                                                     | Attempts $(\pm '3')^2 + (\pm '7')^2 \pm 32.$ Just                                                                                                                                               |           |  |  |  |  |  |  |
|          | $(r^2 =)(3)^2 + (7)^2 + 32$                                                                                                                                                                                         | look for an attempt at this calculation<br>and ignore how it is referenced e.g. as<br><i>r</i> or $r^2$ . May be implied by sight of 90<br>or e.g. $58 \pm 32$ .                                | M1        |  |  |  |  |  |  |
|          | Radius = $3\sqrt{10}$                                                                                                                                                                                               | oe such as $\sqrt{90}$ ( $\pm 3\sqrt{10}$ is A0)                                                                                                                                                | A1        |  |  |  |  |  |  |
| ·        |                                                                                                                                                                                                                     |                                                                                                                                                                                                 | [2]       |  |  |  |  |  |  |
| (c)      | k = 58 or $k = 49$                                                                                                                                                                                                  | For $k = 58$ or $k = 49$ . May be implied<br>by their inequalities but do not award<br>for just seeing 49 or 58 as part of a<br>calculation unless it is stated or<br>implied as a value for k. | M1        |  |  |  |  |  |  |
|          | k = 58 and $k = 49$                                                                                                                                                                                                 | Both values obtained with the same conditions as the previous mark.                                                                                                                             | A1        |  |  |  |  |  |  |
|          | One correct "end                                                                                                                                                                                                    |                                                                                                                                                                                                 |           |  |  |  |  |  |  |
|          | $k \geqslant 49, k \leqslant 58,$                                                                                                                                                                                   | [49,], [, 58] etc.                                                                                                                                                                              | M1        |  |  |  |  |  |  |
|          | Examples:<br>49 < k < 58<br>$49 \leq k < 58$<br>$49 \leq k \leq 58$<br>$49 < k \leq 58$<br>$49 \leq k \leq 58$<br>[49, 58], [49, 58), (49, 58], (49, 58)<br>k > 49, k < 58<br>k > 49 or $k < 58k > 49$ and $k < 58$ | Both "ends" correct                                                                                                                                                                             | A1        |  |  |  |  |  |  |
|          |                                                                                                                                                                                                                     |                                                                                                                                                                                                 | [4        |  |  |  |  |  |  |
|          |                                                                                                                                                                                                                     |                                                                                                                                                                                                 | (8 marks) |  |  |  |  |  |  |

| Question     | Scheme                                                                                                                                                                                                                   |                                                                                                                                                         |             |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| Number       |                                                                                                                                                                                                                          |                                                                                                                                                         | Marks       |  |  |  |  |
| 9(a)         | 21 = p - 2q, -9 = p - 8q                                                                                                                                                                                                 | Attempts two equations in $p$ and $q$ one of which is correct.                                                                                          | M1          |  |  |  |  |
|              | $\Rightarrow p = 31, q = 5$                                                                                                                                                                                              | Solves 2 equations in $p$ and $q$<br>simultaneously. Accept values of $p$ and $q$ as evidence of solving. <b>Dependent on</b><br><b>the first mark.</b> | <b>d</b> M1 |  |  |  |  |
|              |                                                                                                                                                                                                                          | Either $p = 31$ or $q = 5$                                                                                                                              | A1          |  |  |  |  |
|              |                                                                                                                                                                                                                          | Both $p = 31$ and $q = 5$                                                                                                                               | Al          |  |  |  |  |
|              |                                                                                                                                                                                                                          |                                                                                                                                                         | [4]         |  |  |  |  |
| (b)          | $u_{100} = '31' - 100 \times '5' = \dots$                                                                                                                                                                                | Attempts to use $u_{100} = p' - 100 \times q' =$                                                                                                        |             |  |  |  |  |
|              | or<br>$u_{100} = '31' - '5' + (100 - 1) \times (-5) = \dots$                                                                                                                                                             | Attempts $a + 99d$ with $a = p - q$ and<br>$d = \pm q$                                                                                                  | M1          |  |  |  |  |
|              | -469                                                                                                                                                                                                                     | Cao                                                                                                                                                     | A1          |  |  |  |  |
|              | Correct answer only scores both marks                                                                                                                                                                                    |                                                                                                                                                         |             |  |  |  |  |
|              |                                                                                                                                                                                                                          |                                                                                                                                                         |             |  |  |  |  |
| (c)<br>Way 1 | $\frac{n}{2} \left\{ 2a + (n-1)d \right\} $ method: Co                                                                                                                                                                   | prrect values $n = 25$ , $a = 1$ , $d = -5$                                                                                                             |             |  |  |  |  |
|              | n=6                                                                                                                                                                                                                      | $\frac{5}{2} \{ 2 \times (31 - 6 \times 5) + (25 - 1) \times (-5) \}$                                                                                   |             |  |  |  |  |
|              | Allow th                                                                                                                                                                                                                 | iis mark for:                                                                                                                                           | M1          |  |  |  |  |
|              | $\sum_{n=6}^{30} u_n = \frac{n}{2} \{ 2a + (n-1)d \} \text{ with } n = 24 \text{ or } 25, a = p - 6q, d = \pm q$                                                                                                         |                                                                                                                                                         |             |  |  |  |  |
|              | $\sum_{n=6}^{30} u_n = \frac{n}{2} \{ 2a + (n-1)d \} = \frac{25}{2} \{ 2 \times (31 - 6 \times 5) + (25 - 1) \times (-5) \}$<br>This mark is for a fully correct method with their <i>p</i> and <i>q</i> so needs to be: |                                                                                                                                                         |             |  |  |  |  |
|              | $\sum_{n=6}^{30} u_n = \frac{n}{2} \{ 2a + (n-1)d \} \text{ with } n = 25, a = p - 6q, d = -q$                                                                                                                           |                                                                                                                                                         |             |  |  |  |  |
|              | Dependent o                                                                                                                                                                                                              | n the first mark                                                                                                                                        |             |  |  |  |  |
|              |                                                                                                                                                                                                                          | = -1475                                                                                                                                                 | A1          |  |  |  |  |
|              |                                                                                                                                                                                                                          |                                                                                                                                                         | [3]         |  |  |  |  |

|              | www.igexams.com                                                                                                                                                                      |             |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| (c)<br>Way 2 | $\frac{n}{2}$ { $a+l$ } method: Correct values $n = 25, a = 1, l = -119$                                                                                                             |             |
|              | $\sum_{n=6}^{30} u_n = \frac{n}{2} \{a+l\} = \frac{25}{2} \{31 - 6 \times 5 + 31 - 30 \times 5\}$                                                                                    |             |
|              | Allow this mark for:                                                                                                                                                                 | M1          |
|              | $\sum_{n=6}^{\infty} u_n = \frac{n}{2} \{a+l\} \text{ with } n = 24 \text{ or } 25, a = p - 6q, l = p - 30q$                                                                         |             |
|              | $\sum_{n=6}^{30} u_n = \frac{n}{2} \{ a+l \} = \frac{25}{2} \{ 31 - 6 \times 5 + 31 - 30 \times 5 \}$                                                                                |             |
|              | This mark is for a fully correct method with their $p$ and $q$ so needs to be:                                                                                                       | <b>d</b> M1 |
|              | $\sum_{n=6}^{30} u_n = \frac{n}{2} \{a+l\} \text{ with } n = 25, a = p - 6q, l = p - 30q$                                                                                            |             |
|              | Dependent on the first mark                                                                                                                                                          |             |
|              | =-1475                                                                                                                                                                               | A1          |
| (c)<br>Way 3 | $\sum_{1}^{30} - \sum_{1}^{5}$ method: Correct values $a = 26, d = -5$                                                                                                               |             |
|              | Note that there are no marks for attempting $\sum_{n=1}^{5} u_n$ in isolation                                                                                                        |             |
|              | $\sum_{n=1}^{30} u_n = \frac{30}{2} \{ 2 \times (31-5) + 29 \times (-5) \}  \text{or} = \frac{30}{2} \{ 26 + 31 - 5 \times 30 \}$                                                    |             |
|              | Allow this mark for:                                                                                                                                                                 |             |
|              | $\sum_{n=1}^{30} u_n = \frac{30}{2} \{ 2a + 29d \} \text{ or } \frac{30}{2} \{ a+l \} \text{ with } a = p \text{ or } p-q, d = \pm q, l = p-30q$                                     | M1          |
|              | <b>Note that</b> $\sum_{n=1}^{30} u_n = -1395$                                                                                                                                       |             |
|              | This mark is for a fully correct method with their $p$ and $q$ so needs to be:                                                                                                       |             |
|              | $\sum_{n=6}^{30} u_n = \sum_{n=1}^{30} u_n - \sum_{n=1}^{5} u_n$<br>Where:                                                                                                           |             |
|              | $\sum_{n=1}^{30} u_n = \frac{30}{2} \{ 2a + 29d \} \text{ or } \frac{30}{2} \{ a+l \} \text{ and } \sum_{n=1}^{5} u_n = \frac{5}{2} \{ 2a + 4d \} \text{ or } \frac{5}{2} \{ a+l \}$ | <b>d</b> M1 |
|              | with $a = p - q$ , $d = -q$ , $l = p - 30q$<br>Dependent on the first mark                                                                                                           |             |
|              | Note that $\sum_{n=1}^{5} u_n = 80 \left( \text{from } \frac{5}{2} (2 \times 26 + 4(-5)) \text{ or } \frac{5}{2} (26 + 6) \right)$                                                   |             |
|              | = -1475                                                                                                                                                                              | A1          |

| (c)<br>Way 4 | $\sum_{n=6}^{30} p - qn = \sum_{n=6}^{30} p - q \sum_{n=6}^{30} n = 25p - q \times \frac{1}{2}25(30+6) = 25p - 450q = -1475$<br>Splits into 2 sums and attempts both with $n = 24$ or 25<br>Look for:<br>$np - q \times \frac{1}{2}n(30+6)$ or $np - q \times \frac{1}{2}n(2 \times 6 + (n-1) \times 1)$ oe<br>With $n = 24$ or 25 | M1        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|              | Fully correct work with their values and $n = 25$                                                                                                                                                                                                                                                                                  | dM1       |
|              | = -1475                                                                                                                                                                                                                                                                                                                            | A1        |
|              |                                                                                                                                                                                                                                                                                                                                    | (9 marks) |

You may see candidates who recognise it is an AP from the start. In such cases, the following should be applied:

(a)

M1 For  $d/q = \pm \frac{30}{6}$  or  $\pm 5$ 

dM1 For  $21 = a' \pm their'5'$  or  $-9 = a' \pm 7 \times their'6'$  leading to  $a = a' \pm 7 \times their'6'$ 

(b)

M1 For use of a + 99d with their a and d

(c)

M1 Attempts  $S_n$  with  $a = u_6$ ,  $l = u_{30}$  or  $d = \pm 5$ , and n = 24/25

**d**M1 Attempts  $S_n$  with  $a = u_6$ ,  $l = u_{30}$  or d = -5, and n = 25

#### (c) Extra Notes For Information:

1. If they use 
$$\sum_{n=6}^{30} u_n = \sum_{n=1}^{30} u_n - \sum_{n=1}^{6} u_n$$
 this gives  $-1395 - 81 = -1476$  and scores M1dM0A0

2. Listing:

M1 for attempting 24 or 25 terms of the sequence and adding them together:

Terms are:

| 6 | 7  | 8  | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  | 25  | 26  | 27   | 28   | 29   | 30   |
|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| 1 | -4 | -9 | -14 | -19 | -24 | -29 | -34 | -39 | -44 | -49 | -54 | -59 | -64 | -69 | -74 | -79 | -84 | -89 | -94 | -99 | -104 | -109 | -114 | -119 |

dM1 for attempting to add 25 terms A1: -1475

3. A correct answer of -1475 with no working scores 3/3 unless you suspect malpractice (can be done on a calculator now)

| Question<br>Number | Scl                                                                                                                                                                                                           | neme                                                                                                               | Marks       |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| 10(a)              | $s = r\theta \Rightarrow \pi = r \times \frac{\pi}{6} \Rightarrow r = \dots \text{ (cm)}$                                                                                                                     | Attempts to use the formula $s = r\theta$<br>with $s = \pi$ and $\theta = \frac{\pi}{6}$ and solves for <i>r</i> . | M1          |  |  |  |  |
| -                  | r = 6                                                                                                                                                                                                         | $r = 6 (\mathrm{cm})$                                                                                              | A1          |  |  |  |  |
|                    | Correct answer on                                                                                                                                                                                             | ly scores both marks                                                                                               |             |  |  |  |  |
|                    |                                                                                                                                                                                                               |                                                                                                                    | [2]         |  |  |  |  |
| (b)                |                                                                                                                                                                                                               | $rac{\pi}{6} = (3\pi)$<br>$rac{1}{2}r^2\theta$ with $r = their 6$ and $\theta = \frac{\pi}{6}$                     | M1          |  |  |  |  |
|                    | $\frac{1}{2} \times '12'^{2} \times \left(2\pi - \frac{\pi}{6}\right) = (132\pi)$<br>Attempts area sector <i>OBCDO</i> using $A = \frac{1}{2}r^{2}\theta$ with $r = 2 \times their 6$ and                     |                                                                                                                    |             |  |  |  |  |
|                    | $\theta = k\pi - \frac{\pi}{6}$ , when                                                                                                                                                                        | re $k = 1, \frac{1}{2}, 2, \text{ or } 4$                                                                          | M1          |  |  |  |  |
|                    | or                                                                                                                                                                                                            |                                                                                                                    |             |  |  |  |  |
|                    | $\frac{1}{2} \times 12^{2} \times \left(\frac{\pi}{6}\right) (=12\pi)$ and $\pi \times 12^{2} (=144\pi)$                                                                                                      |                                                                                                                    |             |  |  |  |  |
|                    | Attempts area of larger circle using $\pi r^2$ with $r = 2 \times their 6$ and the area of                                                                                                                    |                                                                                                                    |             |  |  |  |  |
|                    | sector <i>OBD</i> with $A = \frac{1}{2}r^2\theta$ and $\theta = \frac{\pi}{6}$ with $r = 2 \times their 6$                                                                                                    |                                                                                                                    |             |  |  |  |  |
|                    | Total area =                                                                                                                                                                                                  |                                                                                                                    |             |  |  |  |  |
|                    |                                                                                                                                                                                                               | or                                                                                                                 |             |  |  |  |  |
|                    |                                                                                                                                                                                                               | $\pi - (12\pi - 3\pi) = \dots$                                                                                     | <b>d</b> M1 |  |  |  |  |
|                    | Fully correct method using $k = 2$ if appropriate. Finds total area by adding their sectors or subtracting the "hole" from the area of the large circle.<br><b>Dependent upon both previous method marks.</b> |                                                                                                                    |             |  |  |  |  |
|                    | $=135\pi(\mathrm{cm}^2)$                                                                                                                                                                                      | Units not required.<br>(Note that the exact answer is required<br>but for reference Area = 424.11)                 | A1          |  |  |  |  |
|                    |                                                                                                                                                                                                               |                                                                                                                    | [4]         |  |  |  |  |

|              | www.ige                                                                           | kams.com                                                                                                                                                                                                                        |             |
|--------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| (c)          | Arc length of sector $BCD =$<br>$'12' \times \frac{11}{6}\pi = (22\pi)$           | Attempts arc length of sector <i>BCD</i><br>using the formula $s = r\theta$ with<br>$r = 2 \times their \ 6$ and $\theta = k\pi - \frac{\pi}{6}$ , where<br>$k = 1, \frac{1}{2}, 2, \text{ or } 4$                              | M1          |
|              | Total perimeter = sector $BCD + 2 \times '6' + \pi =$ (cm)                        | Fully correct method using $k = 2$ .<br>Attempts to find the total perimeter by<br>adding their arc length of sector <i>BCD</i><br>to $2 \times '6' + \pi$ .<br><b>Dependent on the previous mark.</b>                          | <b>d</b> M1 |
|              | $23\pi + 12$ (cm)                                                                 | Units not required. Allow if terms not<br>collected e.g. $22\pi + 6 + 6 + \pi$<br>(Note that the exact answer is required<br>but for reference Perim = 84.25)                                                                   | A1          |
|              |                                                                                   |                                                                                                                                                                                                                                 | [3]         |
| (c)<br>Way 2 | Arc length of sector $BCD = 2 \times \pi \times '12' - '12' \times \frac{\pi}{6}$ | Attempts arc length of sector <i>BCD</i><br>using the formula $C = 2\pi r$ with<br>$r = 2 \times their$ 6 and then subtracting<br>the arc <i>BD</i> using $r\theta$ with<br>$r = 2 \times their$ 6 and $\theta = \frac{\pi}{6}$ | M1          |
|              | Total perimeter = sector $BCD + 2 \times '6' + \pi =$ (cm)                        | Attempts to find the total perimeter<br>by adding their arc length of sector<br>$BCD$ to $2 \times '6' + \pi$ .<br><b>Dependent on the previous mark.</b>                                                                       | <b>d</b> M1 |
|              | $23\pi + 12$ (cm)                                                                 | Units not required. Allow if terms not<br>collected e.g. $22\pi + 6 + 6 + \pi$<br>(Note that the exact answer is<br>required but for reference Perim =<br>84.25)                                                                | A1          |
|              |                                                                                   |                                                                                                                                                                                                                                 | (9 marks)   |

Special Case:Some candidates having obtained"6" in part (a) think they have found OB<br/>and then use OB = 2xOA to give OA = 3The following can be applied but if you are unsure if this special case applies, please send to review (a) M1A0

(b) M1M1**d**M0A0

(c) M1**d**M0A0

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                               | Marks |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|
| 11(a)              | y<br>y<br>12<br>12<br>y<br>12<br>y<br>12<br>y<br>12<br>y<br>12<br>y<br>12<br>y<br>12<br>y<br>12<br>y<br>12<br>y<br>12<br>y<br>y<br>12<br>y<br>y<br>12<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y                                                                                                                                                                                                        | B1    |  |  |  |  |  |
|                    | $-2$ $-2$ $2$ $3$ $x$ $\frac{\text{Intercepts:}}{\text{Allow for a y-intercept of 12}}$ or x-intercepts of -2, 2 and 3 (See note below)                                                                                                                                                                                                                                                              | B1    |  |  |  |  |  |
|                    | Correct shape with correct<br>intercepts with a minimum in<br>quadrant 4 and a maximum in<br>quadrant 1 <b>or</b> quadrant 2 <b>or</b><br>at (0, 12). Allow the curve to<br>stop at (-2, 0)                                                                                                                                                                                                          | B1    |  |  |  |  |  |
|                    | For the intercepts, allow them to be marked as shown in the diagram and also<br>as e.g. (0, 12), (-2, 0), (2, 0), (3, 0) and allow the coordinates as (12, 0) etc. as<br>long as they are marked in the correct places. If the coordinates are not on the<br>diagram then they must be the right way round and correspond with the<br>sketch. The sketch takes precedence if there is any ambiguity. |       |  |  |  |  |  |
|                    | Note:<br>If the sketch consists of 3 straight line segments<br>but is otherwise correct award 110                                                                                                                                                                                                                                                                                                    |       |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                      | [3]   |  |  |  |  |  |

|     | www.igexams.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
| (b) | $(x^{2}-4)(x-3) = x^{3}-3x^{2}-4x+12$ | M1  |  |  |  |  |  |
|     | $\int x^3 - 3x^2 - 4x + 12  dx = \frac{1}{4}x^4 - x^3 - 2x^2 + 12x$ M1: Integrates with at least three terms having their powers raised by 1 Dependent on the first method mark A1: Fully correct integration (allow unsimplified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |  |  |  |  |  |
|     | $\begin{bmatrix} \frac{1}{4}x^4 - x^3 - 2x^2 + 12x \end{bmatrix}_{-2}^{2} = () - ()$ Uses limits 2 and -2 in their integrated<br>(changed) function and subtracts either<br>way round.<br>May be implied – see note below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |
|     | = 32 Note that some candidates calculate other areas in addition to <i>R</i> .<br>In such cases, this final mark should be withheld if it is not clear that the area<br>of <i>R</i> has been identified as 32<br>e.g. area under <i>x</i> -axis = 0.75 so area of <i>R</i> is 32 + 0.75 = 32.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [5] |  |  |  |  |  |

### (b) Notes:

Correct integration followed by a correct answer scores **full marks** e.g.  

$$\int_{-2}^{2} (x^{3} - 3x^{2} - 4x + 12) dx = \left[\frac{1}{4}x^{4} - x^{3} - 2x^{2} + 12x\right]_{-2}^{2} = 32$$
So that the substitution can be implied in such cases  
But  
Values to look for when substituting if needed:  

$$\left[\frac{1}{4}x^{4} - x^{3} - 2x^{2} + 12x\right]_{-2}^{2} = (4 - 8 - 8 + 24) - (4 + 8 - 8 - 24) = 12 - (-20) = 32$$
If there is no integration then only the first mark for expanding is available e.g.  

$$\int_{-2}^{2} (x^{3} - 3x^{2} - 4x + 12) dx = 32$$
Scores M1dM0A0M0A0

| (c)(i) | www.ig                                                                                                                           | $P_{4x^2-4}(2x-3)$            | om                                    |            |  |  |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|------------|--|--|--|--|--|--|
|        |                                                                                                                                  | · · · · ·                     |                                       |            |  |  |  |  |  |  |
|        |                                                                                                                                  | valent correct ex             |                                       | B1         |  |  |  |  |  |  |
|        | e.g. $(2x)^3 - 3(2x)^2 - 4(2x) + 12$ , $(2x-2)(2x+2)(2x-3)$                                                                      |                               |                                       |            |  |  |  |  |  |  |
|        | and " $y =$ " not required.                                                                                                      |                               |                                       |            |  |  |  |  |  |  |
| (ii)   | isw once a correct expression is seen<br>In (c) part (ii) mark positively where possible                                         |                               |                                       |            |  |  |  |  |  |  |
| (11)   | In (c) part (ii), mark positively where possible<br>Note that strictly speaking, a stretch requires an invariant line but we are |                               |                                       |            |  |  |  |  |  |  |
|        | not insisting that candidates refer to an invariant line here                                                                    |                               |                                       |            |  |  |  |  |  |  |
|        | -                                                                                                                                | 2. Examples                   | 3. Examples                           |            |  |  |  |  |  |  |
|        |                                                                                                                                  | Scale factor                  | Parallel to/on/at the <i>x</i> -axis/ |            |  |  |  |  |  |  |
|        | 1 0                                                                                                                              | 5/Divides by 2                | Horizontally                          | M1A1       |  |  |  |  |  |  |
|        | Smaller/Thinner/<br>Contracted                                                                                                   |                               |                                       |            |  |  |  |  |  |  |
|        | (Any idea of size change)                                                                                                        |                               |                                       |            |  |  |  |  |  |  |
|        |                                                                                                                                  | any 2 of the abo              | vve                                   |            |  |  |  |  |  |  |
|        |                                                                                                                                  | or all of the abov            |                                       |            |  |  |  |  |  |  |
|        |                                                                                                                                  | e: Covers 2 & 3               |                                       |            |  |  |  |  |  |  |
|        | x (values) divided by 2 (halved)                                                                                                 |                               |                                       |            |  |  |  |  |  |  |
|        | and halving e.g.                                                                                                                 |                               | pecial case                           |            |  |  |  |  |  |  |
|        |                                                                                                                                  | • x halved                    | <i>,</i>                              |            |  |  |  |  |  |  |
|        | •                                                                                                                                | multiply $x$ by $\frac{1}{2}$ | 2                                     | [3]        |  |  |  |  |  |  |
|        |                                                                                                                                  | Examples:                     |                                       |            |  |  |  |  |  |  |
|        | Enlarge scale factor                                                                                                             |                               |                                       |            |  |  |  |  |  |  |
|        | The <i>x</i> values are divided by 2                                                                                             | and no change                 | in the y values = $M1A1$              |            |  |  |  |  |  |  |
|        | The <i>x</i> values chan                                                                                                         | ge to $-1, 1$ and             | $\frac{3}{2} = M1A0$                  |            |  |  |  |  |  |  |
|        | New coordinates are (0,                                                                                                          |                               |                                       |            |  |  |  |  |  |  |
|        |                                                                                                                                  | scores M1                     | .A0                                   |            |  |  |  |  |  |  |
|        | -1 $12$ $12$ $1$ $1.5$                                                                                                           | scores M1                     | A1                                    |            |  |  |  |  |  |  |
|        |                                                                                                                                  |                               |                                       | (11 marks) |  |  |  |  |  |  |

| www.igexams.com                                                                                |                                                                                                                                                                                                     |             |  |  |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| Question<br>Number                                                                             | Scheme                                                                                                                                                                                              | Marks       |  |  |
| 12(i)                                                                                          | Examples:                                                                                                                                                                                           |             |  |  |
|                                                                                                | $\log_p 2x - \log_p 5 = \log_p \left(\frac{2x}{5}\right), \ \log_p 8 + \log_p 5 = \log_p 40$                                                                                                        |             |  |  |
|                                                                                                | $3 = \log_p p^3$ , $\log_p 8 + 3 = \log_p 8 + \log_p "y" = \log_p 8"y"$                                                                                                                             | M1          |  |  |
|                                                                                                | This mark is to be awarded for evidence of the use of a correct log law.<br>Allow slips when rearranging as long as a correct law is used e.g.                                                      |             |  |  |
|                                                                                                | $\log_{p} 2x - \log_{p} 5 = 3 + \log_{p} 8 \Longrightarrow \log_{p} 2x = 3 + \log_{p} 8 - \log_{p} 5 = \log_{p} \frac{8}{5}$                                                                        |             |  |  |
| Examples:                                                                                      |                                                                                                                                                                                                     |             |  |  |
|                                                                                                | $\log_{p}\left(\frac{2x}{5}\right) = \log_{p} 8p^{3}, \log_{p}\left(\frac{2x}{40}\right) = \log_{p} p^{3}, \log_{p}\left(\frac{2x}{40}\right) = 3, \log_{p}\left(\frac{\frac{2x}{5}}{8}\right) = 3$ | A1          |  |  |
|                                                                                                | This mark is for a correct equation of the form $\log p = \log q$ or $\log p = q$                                                                                                                   |             |  |  |
|                                                                                                | Examples:                                                                                                                                                                                           |             |  |  |
| $\frac{2x}{5} = 8p^3 \Longrightarrow x = \dots, \frac{2x}{40} = p^3 \Longrightarrow x = \dots$ |                                                                                                                                                                                                     | <b>d</b> M1 |  |  |
|                                                                                                | This mark is for removing the logs correctly and reaches $x = \dots$                                                                                                                                |             |  |  |
| Dependent on the first method mark                                                             |                                                                                                                                                                                                     |             |  |  |
|                                                                                                | $x = 20 p^3$ $(x = \frac{40 p^3}{2} \text{ or } \frac{p^3}{0.05} \text{ or } \frac{p^3}{\frac{1}{20}} \text{ is A0})$                                                                               | Alcso       |  |  |
|                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                               | [4]         |  |  |



| www.igexams.com |                                                                                                                   |                                                                                                                         |             |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------|--|
| (ii)            | $\frac{\text{www.lgexams.com}}{2(\log_2 y)^2 + 7\log_2 y - 15 = 0 \Rightarrow (2\log_2 y - 3)(\log_2 y + 5) = 0}$ |                                                                                                                         |             |  |
|                 | or e.g.<br>$2x^2 + 7x - 15 = 0 \Rightarrow (2x - 3)(x + 5) = 0$                                                   |                                                                                                                         | M1          |  |
|                 |                                                                                                                   | atic equation – see General Guidance                                                                                    |             |  |
|                 | $\Rightarrow (\log_2 y) = \frac{3}{2}, -5$                                                                        | Correct values (ignore lhs)                                                                                             | A1          |  |
|                 | $\log_2 y = C \Longrightarrow y = 2^C$                                                                            | Undoes the log correctly at least once.<br>May be implied by e.g.<br>$\log_2 y = 1.5 \Rightarrow y = 2.82$              | <b>d</b> M1 |  |
|                 |                                                                                                                   | Dependent on the first method mark.                                                                                     |             |  |
|                 | $y = 2\sqrt{2}$ or $y = \frac{1}{32}$                                                                             | One correct. Must be $2\sqrt{2}$ but allow $2^{-5}, \frac{1}{2^5}, 0.03125$ for $\frac{1}{32}$                          | A1          |  |
|                 | $y = 2\sqrt{2}$ and $y = \frac{1}{32}$                                                                            | Both correct. Must be $2\sqrt{2}$ but allow $2^{-5}$ , $\frac{1}{2^5}$ , 0.03125 for $\frac{1}{32}$ and no other values | A1          |  |
|                 |                                                                                                                   | values.                                                                                                                 | [5]         |  |
|                 |                                                                                                                   |                                                                                                                         | (9 marks)   |  |
| L               |                                                                                                                   |                                                                                                                         |             |  |

Beware wrong working leading to  $y = 2^{-5}$   $2(\log_2 y)^2 + 7\log_2 y = 15 \Rightarrow \log_2 y^4 + \log_2 y^7 = 15 \Rightarrow \log_2 \frac{y^4}{y^7}$   $y^{-3} = 2^{15} \Rightarrow y = (2^{15})^{-\frac{1}{3}} = 2^{-5}$ (= No marks)

|                    | www.ige                                                                                                                                                                                                                                             | xams.com                                                                                                                                                                                                                                                          |             |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Question<br>Number | Scheme                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                   | Marks       |
| 13(i)              | $7\sin 2\theta = 5\cos 2$<br>Score for tan.                                                                                                                                                                                                         | $\theta \Rightarrow (2\theta =) \arctan\left(\frac{5}{7}\right)$<br>= $\frac{5}{7}$ or $\tan = \frac{7}{5}$                                                                                                                                                       | M1          |
|                    | $(2\theta =) \arctan\left(\frac{5}{7}\right)$                                                                                                                                                                                                       | For sight of $\arctan\left(\frac{5}{7}\right)$ . This may be<br>implied by awrt 35° or 215° or a<br>value for $\theta$ of 17° or 107°<br>Or the equivalent in radians (0.62, 3.8,<br>0.31, 1.9)                                                                   | A1          |
|                    | (θ=)awrt 17.8°, 107.8°                                                                                                                                                                                                                              | Proceeds to find at least one value for $\theta$<br>using correct order of operations. May<br>be implied by one correct value or<br>truncated e.g. 17.7°,107.7°.<br><b>Dependent on the first method mark.</b>                                                    | <b>d</b> M1 |
|                    |                                                                                                                                                                                                                                                     | Both correct. Allow awrt 17.8°, 107.8°<br>and no other values in range. Ignore<br>answers outside the range.                                                                                                                                                      | A1 [4]      |
|                    |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |             |
|                    | Alternative by squaring: $7 \sin 2\theta = 5 \cos 2\theta \Rightarrow 49 \sin^2 2\theta = 25 \cos^2 2\theta$ $10(1 - \frac{2}{2}2\theta) = 25 - \frac{2}{2}2\theta \Rightarrow 40 \pm \frac{2}{2}2\theta = 25(1 - \frac{2}{2}2\theta)$              |                                                                                                                                                                                                                                                                   |             |
|                    |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |             |
|                    | $\Rightarrow 49(1 - \cos^2 2\theta) = 25\cos^2 2\theta \text{ or } \Rightarrow 49\sin^2 2\theta = 25(1 - \sin^2 2\theta)$<br>Squares both sides and uses $\cos^2 2\theta = \pm 1 \pm \sin^2 2\theta$ or $\sin^2 2\theta = \pm 1 \pm \cos^2 2\theta$ |                                                                                                                                                                                                                                                                   | M1          |
|                    | $(2\theta =)\arccos\left((\pm)\frac{7}{\sqrt{74}}\right)$<br>or<br>$(2\theta =)\arcsin\left((\pm)\frac{5}{\sqrt{74}}\right)$                                                                                                                        | For sight of $\arccos\left((\pm)\frac{7}{\sqrt{74}}\right)$ or<br>$\arcsin\left((\pm)\frac{5}{\sqrt{74}}\right)$ . This may be implied<br>by awrt 35° or 215° or a value for<br>$\theta$ of 17° or 107°<br>Or the equivalent in radians (0.62, 3.8,<br>0.31, 1.9) | A1          |
|                    | $\theta = $ awrt 17.8°, 107.8°                                                                                                                                                                                                                      | Proceeds to find at least one value for $\theta$<br>using correct order of operations. May<br>be implied by one correct value or<br>truncated e.g. 17.7°,107.7°.<br><b>Dependent on the first method mark.</b>                                                    | dM1         |
|                    |                                                                                                                                                                                                                                                     | Both correct. Allow awrt 17.8°, 107.8°<br>and no other values in range. Ignore<br>answers outside the range.                                                                                                                                                      | A1          |

Any attempts in (i) that use double angle formulae that you think may deserve any credit should be sent to review

|      |                                                                                                                                                                                                                                      |                                                                                      | 1         |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------|
| (ii) | $24\tan x = 5\cos x \Longrightarrow 24\sin x = 5\cos^2 x$                                                                                                                                                                            | Uses the identity $\tan x = \frac{\sin x}{\cos x}$ and                               | M1        |
|      |                                                                                                                                                                                                                                      | moves to an equation of the type                                                     |           |
|      |                                                                                                                                                                                                                                      | $A\sin x = B\cos^2 x$ or equivalent.                                                 |           |
|      |                                                                                                                                                                                                                                      | Uses the identity $\cos^2 x = 1 - \sin^2 x$ to                                       |           |
|      | $\Rightarrow 24\sin x = 5(1-\sin^2 x)$                                                                                                                                                                                               | produce a quadratic equation in $\sin x$                                             | dM1       |
|      |                                                                                                                                                                                                                                      | Depends on the first method mark                                                     |           |
|      | $\Rightarrow 5\sin^2 x + 24\sin x - 5 = 0$                                                                                                                                                                                           | Correct 3 term quadratic with terms all on one side.                                 | Al        |
|      |                                                                                                                                                                                                                                      | Attempts to solve 3TQ in $\sin x$ – see                                              |           |
|      | $\Rightarrow \sin x = \frac{1}{5}$                                                                                                                                                                                                   | general guidance. Must be $\sin x = \dots$<br>but may be implied by their attempt to | M1        |
|      |                                                                                                                                                                                                                                      | solve.                                                                               |           |
|      | $\Rightarrow x = awrt 0.201, 2.940$<br>Or $x = awrt 0.064\pi, 0.936\pi$ or $\frac{23}{360}\pi, \frac{337}{360}\pi$<br>Both (awrt) $x = 0.201, 2.940$ or $0.064\pi, 0.936\pi$ or $\frac{23}{360}\pi, \frac{337}{360}\pi$ and no other |                                                                                      |           |
|      |                                                                                                                                                                                                                                      |                                                                                      |           |
|      |                                                                                                                                                                                                                                      |                                                                                      |           |
|      | values in range.                                                                                                                                                                                                                     |                                                                                      |           |
|      | Ignore answers outside the range.                                                                                                                                                                                                    |                                                                                      |           |
|      | Allow 2.94 as the second angle but not awrt 2.94 e.g. do not accept 2.941                                                                                                                                                            |                                                                                      |           |
|      | Note:                                                                                                                                                                                                                                |                                                                                      |           |
|      | · / 1                                                                                                                                                                                                                                | aving a correct $3TQ$ in sin x i.e. must                                             |           |
|      | follow the previous A1, but if the 3TQ is factorised incorrectly e.g.<br>$(5\sin x - 1)(\sin x - 5) = 0 \Rightarrow \sin x = \frac{1}{5}, (5) \Rightarrow x = 0.201, 2.940$<br>then allow full recovery.                             |                                                                                      |           |
|      |                                                                                                                                                                                                                                      |                                                                                      |           |
|      |                                                                                                                                                                                                                                      |                                                                                      |           |
|      | Mark their final answers and do not apply isw for the final mark.                                                                                                                                                                    |                                                                                      |           |
|      |                                                                                                                                                                                                                                      |                                                                                      | [5]       |
|      |                                                                                                                                                                                                                                      |                                                                                      | (9 marks) |
|      |                                                                                                                                                                                                                                      |                                                                                      |           |

| www.igexams.com                                                                                                                    |                                                                                                                                          |             |  |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Possible alt                                                                                                                       | ernative in (ii):                                                                                                                        |             |  |
| $24 \tan x = 5 \cos x \Longrightarrow 576 \tan^2 x = 25 \cos^2 x$ $\Longrightarrow 576 (\sec^2 x - 1) = 25 \cos^2 x$               | Squares both sides and uses the<br>identity $1 + \tan^2 x = \sec^2 x$ to reach<br>$\alpha (\sec^2 x - 1) = \beta \cos^2 x$               | M1          |  |
| $\Rightarrow 576 \left(\frac{1}{\cos^2 x} - 1\right) = 25 \cos^2 x$ $\Rightarrow 576 \left(1 - \cos^2 x\right) = 25 \cos^4 x$      | Uses the identity $\sec^2 x = \frac{1}{\cos^2 x}$ to<br>produce a quadratic equation in $\cos^2 x$<br>Depends on the first method mark   | <b>d</b> M1 |  |
| $\Rightarrow 25\cos^4 x + 576\cos^2 x - 576 = 0$                                                                                   | Correct 3 term quadratic (not<br>necessarily all on one side e.g. allow<br>$25\cos^4 x + 576\cos^2 x = 576$ )                            | A1          |  |
| $\Rightarrow (25\cos^2 x - 24)(\cos^2 x + 24) = 0$ $\Rightarrow \cos^2 x = \frac{24}{25} \Rightarrow \cos x = \frac{2\sqrt{6}}{5}$ | Attempts to solve 3TQ in $\cos^2 x$ – see<br>general guidance and reaches $\cos x =$<br>but may be implied by their attempt<br>to solve. | M1          |  |
| $\Rightarrow x = 0.201, \ 0.940$                                                                                                   | See above                                                                                                                                | A1          |  |

|                    | www.igex                                                                                                                                                                                                                             | ams.com                                                                                                                                          | 1     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Question<br>Number | Scheme                                                                                                                                                                                                                               |                                                                                                                                                  | Marks |
| 14(a)              | $140000 \times r^2 = 150000$                                                                                                                                                                                                         | For sight of $140000 \times r^2 = 150000$<br>( <i>r</i> may be called <i>p</i> or even $1 + p$ )                                                 | M1    |
|                    | $r^2 = \frac{15}{14} \Longrightarrow r = 1.0351$                                                                                                                                                                                     | For awrt 1.03 or 1.04 or exact $\sqrt{\frac{15}{14}}, \frac{\sqrt{210}}{14}$ . (It may be called <i>p</i> and ignore any % symbols)              | A1    |
|                    | $\Rightarrow p = 3.51$                                                                                                                                                                                                               | Correct value only                                                                                                                               | B1    |
|                    | *                                                                                                                                                                                                                                    | <u>,</u>                                                                                                                                         | [3]   |
| (a)<br>Way 2       | $140000 \times \left(1 + \frac{p}{100}\right)^2 = 150000$                                                                                                                                                                            | For sight of<br>$140000 \times \left(1 + \frac{p}{100}\right)^2 = 150000$ or e.g.<br>$140000 \times \left(\frac{100 + p}{100}\right)^2 = 150000$ | M1    |
|                    | $\left(1 + \frac{p}{100}\right) = 1.0351$                                                                                                                                                                                            | For awrt 1.03 or 1.04 or exact $\sqrt{\frac{15}{14}}, \frac{\sqrt{210}}{14}$ .                                                                   | A1    |
|                    | $\Rightarrow p = 3.51$                                                                                                                                                                                                               | Correct value only                                                                                                                               | B1    |
| (a)<br>Way 3       | $\frac{150000}{u_2} = \frac{u_2}{140000} \Rightarrow u_2 = \sqrt{150000 \times 140000} \Rightarrow r = \frac{\sqrt{150000 \times 140000}}{140000}$<br>Sight of $\frac{150000}{u_2} = \frac{u_2}{140000}$ (oe) and attempts to find r |                                                                                                                                                  | M1    |
|                    | r = 1.0351                                                                                                                                                                                                                           | For awrt 1.03 or 1.04 or exact $\sqrt{\frac{15}{14}}, \frac{\sqrt{210}}{14}$ . (It may be called <i>p</i> )                                      | A1    |
|                    | $\Rightarrow p = 3.51$                                                                                                                                                                                                               | Correct value only                                                                                                                               | B1    |
| (a)<br>Way 4       | $140000 \times \left(1 + \frac{p}{100}\right)^2 = 150000 \text{ or } 140000 \times \left(\frac{100 + p}{100}\right)^2 = 150000$<br>Sight of the above                                                                                |                                                                                                                                                  | M1    |
|                    | $140000 \times \left(1 + \frac{p}{50} + \frac{p^2}{10000}\right) = 150000$ $\implies 7p^2 + 1400p - 5000 = 0$                                                                                                                        |                                                                                                                                                  | A1    |
|                    | $\Rightarrow p = 3.51$                                                                                                                                                                                                               | Correct value only                                                                                                                               | B1    |

| 1   | 8                                                                                                                                  |                                                                              |             |
|-----|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------|
| (b) | In (b) the marks are available for solving an equation or an inequality so allow                                                   |                                                                              |             |
|     | "=", ">", "<" etc. but the final mark must be a value not a range so e.g. $N > 37$                                                 |                                                                              |             |
|     | scores B0                                                                                                                          |                                                                              |             |
|     |                                                                                                                                    | States or uses                                                               |             |
|     |                                                                                                                                    | $140000 \times ("1.0351")^{"_N"} = 500000$ or                                |             |
|     | 1.40.000 (1.00 <b>5</b> 1) <sup>"</sup> N" <b>5</b> 00.000                                                                         | $140\ 000 \times ("1.0351")^{"_{N-1}"} = 500\ 000$                           |             |
|     | $140000 \times (1.0351)^{"N"} = 500000$                                                                                            | Condone poor notation e.g. if their <i>r</i> is $r^{n}$                      | M1          |
|     |                                                                                                                                    | $\frac{15}{10000000000000000000000000000000000$                              |             |
|     |                                                                                                                                    | 14 14<br>Requires <i>r</i> > 1                                               |             |
|     | 25                                                                                                                                 | "Correct" intermediate statement                                             |             |
|     | $("1.0351")^{"N"} = \frac{25}{7}$                                                                                                  | $("1.0351")^{*N"} = \frac{25}{7}$ or $("1.0351")^{"N-1"} = \frac{25}{7}$     | A1          |
|     | Examples:                                                                                                                          |                                                                              |             |
|     |                                                                                                                                    | -                                                                            |             |
|     | $"N" = \frac{\log(7)}{2} = \dots$                                                                                                  | $N'' = \log_{10351''} \left(\frac{25}{7}\right) = \dots$                     | D (1        |
|     | $"N" = \frac{\log(\frac{25}{7})}{\log"1.0351"} =, "N" = \log_{"1.0351"}(\frac{25}{7}) =$<br>Uses logs correctly to find N or N - 1 |                                                                              | <b>d</b> M1 |
|     |                                                                                                                                    |                                                                              |             |
|     |                                                                                                                                    | e first method mark                                                          |             |
|     |                                                                                                                                    | can score for <u>their <i>r</i> (</u> which may be p)                        |             |
|     |                                                                                                                                    | than 1 for the dM1 mark                                                      |             |
|     |                                                                                                                                    | Correct value for $N$ or $N - 1$ . May be                                    |             |
|     | " <i>N</i> " = awrt 36.9                                                                                                           | implied by a final answer of 37 and                                          |             |
|     | or                                                                                                                                 | can be implied by e.g.                                                       | A1          |
|     | "N-1" = awrt 36.9                                                                                                                  | $"N-1" = \log_{"1.0351"} \left(\frac{25}{7}\right) \Longrightarrow N = 37.9$ |             |
|     | N = 37                                                                                                                             | Cao                                                                          | B1          |
|     | Note that if e.g. $("1.0351")^{"N"} = \frac{25}{7}$ is followed by $N = 37$ without the                                            |                                                                              |             |
|     | intermediate log work, this scores                                                                                                 |                                                                              |             |
|     |                                                                                                                                    | M0A0B1                                                                       |             |
|     |                                                                                                                                    |                                                                              | [5]         |
|     |                                                                                                                                    |                                                                              | (8 marks)   |
|     |                                                                                                                                    |                                                                              |             |

Note that some may work with  $ar^{N-1}$  in (b) completely correctly if they take "a" as the second term: E.g.  $140\ 000 \times \sqrt{\frac{15}{14}} ("1.0351")^{"N-1"} = 500\ 000$   $\left(\sqrt{\frac{15}{14}}\right)^{"N-1"} = \frac{500\ 000}{140000}\sqrt{\frac{14}{15}}$  $"N-1" = \log_{\sqrt{\frac{15}{14}}} \frac{500\ 000}{140000}\sqrt{\frac{14}{15}} = 35.9...$ 

*N* = 37

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| 15(a)              | NB Allow <i>H</i> for <i>h</i> throughout                                                                                                                                                                                                                                                                                                                                                                              |       |  |
|                    | $5 = \pi r^2 h + \frac{4}{3}\pi r^3 \Rightarrow h = \frac{5 - \frac{4}{3}\pi r^3}{\pi r^2}$<br>Uses $5 = \pi r^2 h + \frac{4}{3}\pi r^3$ or $5 = \pi r^2 h + \frac{2}{3}\pi r^3 + \frac{2}{3}\pi r^3$<br>and attempts to make <i>h</i> , <i>rh</i> or $\pi rh$ the subject.<br><b>Must use a correct volume formula</b>                                                                                                | M1    |  |
|                    | $h = \frac{5 - \frac{4}{3}\pi r^3}{\pi r^2} \text{ or } h = \frac{5}{\pi r^2} - \frac{4}{3}r \text{ or } rh = \frac{5 - \frac{4}{3}\pi r^3}{\pi r} \text{ or } hr = \frac{5}{\pi r} - \frac{4}{3}r^2 \text{ or}$ $\pi rh = \frac{5 - \frac{4}{3}\pi r^3}{r}$ Correct expression for <i>h</i> , <i>rh</i> or $\pi rh$<br>Award this mark once a correct expression is seen and ignore subsequent attempts to "simplify" | A1    |  |
|                    | $A = 4\pi r^{2} + 2\pi rh \Rightarrow A = 4\pi r^{2} + 2\pi r \times \frac{5 - \frac{4}{3}\pi r^{3}}{\pi r^{2}}$<br>Subs $h =$ or $rh =$ or $\pi rh =$ into $A = 4\pi r^{2} + 2\pi rh$ to get A in terms of r<br><b>Must use a correct area formula</b>                                                                                                                                                                | M1    |  |
|                    | $\Rightarrow A = \frac{10}{r} + \frac{4}{3}\pi r^2 *$<br>Completes proof with no errors or omissions.<br>Allow $A = 4\pi r^2 + 2\pi r \times \frac{5 - \frac{4}{3}\pi r^3}{\pi r^2} = \frac{10}{r} + \frac{4}{3}\pi r^2$                                                                                                                                                                                               | A1*   |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                        | [4]   |  |

|     |                                                                                                                                                           | D:00 1                                                                                                                                                                                                                                                              |              |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| (b) | (14) 10 8                                                                                                                                                 | Differentiates and gets one term correct (unsimplified)                                                                                                                                                                                                             | M1           |
|     | $\left(\frac{\mathrm{d}A}{\mathrm{d}r}\right) - \frac{10}{r^2} + \frac{8}{3}\pi r$                                                                        | $\frac{dA}{dr} = -\frac{10}{r^2} + \frac{8}{3}\pi r$ (may be unsimplified)                                                                                                                                                                                          | A1           |
|     | $\Rightarrow \frac{\mathrm{d}A}{\mathrm{d}r} = 0 \Rightarrow r = 1.06(\mathrm{m})$                                                                        | Sets $\frac{dA}{dr} = 0$ and proceeds to $r^3 = C$<br>where C is a positive constant.<br>This is implied by $r =$<br>Dependent on first method mark.                                                                                                                | <b>d</b> M1  |
|     | u/                                                                                                                                                        | $r = \text{awrt } 1.06(\text{m}) \text{ or exact } r = \sqrt[3]{\frac{15}{4\pi}} \text{ oe}$<br>May be implied.                                                                                                                                                     | A1           |
|     |                                                                                                                                                           | Substitutes their 1.06 (must be positive) into $A = \frac{10}{r} + \frac{4}{3}\pi r^2$                                                                                                                                                                              | <b>dd</b> M1 |
|     | $\Rightarrow A = \frac{10}{1.06} + \frac{4}{3}\pi \times 1.06^2 = 14.14(\text{m}^2)$                                                                      | Dependent on both previous method<br>marks                                                                                                                                                                                                                          | uuivii       |
|     |                                                                                                                                                           | awrt $14.1(m^2)$                                                                                                                                                                                                                                                    | A1           |
|     |                                                                                                                                                           |                                                                                                                                                                                                                                                                     | [6]          |
| (c) | $\frac{\mathrm{d}^2 A}{\mathrm{d}r^2} = \frac{8}{3}\pi + \frac{20}{r^3}\Big _{r=1.06} = \dots$                                                            | Obtains $\frac{d^2 A}{dr^2} = A \pm \frac{B}{r^3} (A, B \neq 0)$ and<br>substitutes in their positive <i>r</i> from (b)<br>and considers sign <b>or</b> makes reference<br>to the sign of the second derivative<br><b>provided they have a positive </b> <i>r</i> . | M1           |
|     | $\left(\frac{d^2 A}{dr^2}\right) = \frac{8}{3}\pi + \frac{20}{1.06^3}$                                                                                    | $\Rightarrow \frac{\mathrm{d}^2 A}{\mathrm{d}r^2} > 0 \therefore \mathrm{minimum}$                                                                                                                                                                                  |              |
|     | Requires a <b>correct second derivative</b> and the <b>correct value of</b> <i>r</i> .<br>There must be a reference to the sign of the second derivative. |                                                                                                                                                                                                                                                                     |              |
|     | If <i>r</i> is substituted and then $\frac{d^2 A}{dr^2}$ is evaluated incorrectly allow this mark if the                                                  |                                                                                                                                                                                                                                                                     |              |
|     | other conditions are met.<br>If <i>r</i> is not substituted then the reference to $\frac{d^2A}{dr^2}$ being positive must also                            |                                                                                                                                                                                                                                                                     | A1           |
|     | include a reference to the fact that <i>r</i> is positive.<br>$NB\left(\frac{d^2A}{dr^2}\right)_{r=\sqrt[3]{\frac{15}{4\pi}}} = 8\pi = 25.13$             |                                                                                                                                                                                                                                                                     |              |
|     |                                                                                                                                                           | ents this mark should be withheld<br>'rather than $\frac{d^2 A}{dr^2} > 0$ minimum                                                                                                                                                                                  |              |
|     |                                                                                                                                                           | u                                                                                                                                                                                                                                                                   | [2]          |

| (d)          | $r = 1.06 \Longrightarrow h = \frac{5 - \frac{4}{3}\pi r^3}{\pi r^2}$ $h = 0$                                                                                                             | Substitutes their positive $r = 1.06$ into<br>a <b>correct</b> expression for $h$ <b>or</b> their<br>(possibly incorrect) $h$ from part (a).<br><b>Must obtain a value.</b><br>Cao         | M1<br>A1<br>[2] |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| (d)<br>Way 2 | $4\pi r^{2} + 2\pi rh = \frac{10}{r} + \frac{4}{3}\pi r^{2}$ $4\pi (1.06)^{2} + 2\pi (1.06)h = 14.1$ $\Rightarrow h =$ $h = 0$                                                            | Uses the given A in terms of r and<br>sets equal to a correct expression<br>for A or their (possibly incorrect) A<br>from part (a) and uses their r to find<br>$h$ Must obtain a value.Cao | M1              |
| (d)<br>Way 3 | $\frac{\frac{4}{3}\pi r^3 + \pi r^2 h = 5}{\Rightarrow \pi \left(\frac{15}{4\pi}\right)^{\frac{2}{3}} h + \frac{4}{3}\pi \left(\frac{15}{4\pi}\right) = 5 \Rightarrow h = \dots}$ $h = 0$ | Uses $V = 5$ with a correct V or<br>their (possibly incorrect) V from<br>part (a) and their r to find h.<br>Must obtain a value.<br>Cao                                                    | M1              |
|              |                                                                                                                                                                                           |                                                                                                                                                                                            | (14 marks)      |

#### Note regarding a correct value for *r* fortuitously:

#### **Example – (this has been seen):**

$$\left(\frac{dA}{dr}\right) = \frac{10}{r^2} + \frac{8}{3}\pi r = 0 \text{ (Sign error)}$$
$$\left(\frac{dA}{dr}\right) = \frac{10}{r^2} = \frac{8}{3}\pi r \Rightarrow r^3 = \frac{15}{4\pi} \text{ (Another sign error)}$$
$$\Rightarrow r = \sqrt[3]{\frac{15}{4\pi}}$$
$$\Rightarrow A = \frac{10}{1.06} + \frac{4}{3}\pi \times 1.06^2 = 14.14 \text{ (m}^2\text{)}$$

Can score M1A0M1A0M1A1 and then allow a full recovery in (c) and (d)

Also, if e.g. r = -1.06 is obtained in (b) then a similar "recovery" approach can be taken with the marking so that the final M1A1 can be awarded in (b) if r = +1.06 is used to obtain 14.1 and allow a full recovery in (c) and (d) if r = +1.06 is also used

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom