Mark Scheme (Results) J anuary 2011

GCE

GCE Core Mathematics C2 (6664) Paper 1

www.igexams.com

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2011
Publications Code US026235
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol fwill be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

J anuary 2011
 Core Mathematics C2 6664
 Mark Scheme

Question Number	Scheme ${ }^{\text {S }}$ Marks
1. (a)	$\mathrm{f}(x)=x^{4}+x^{3}+2 x^{2}+a x+b$ Attempting $\mathrm{f}(1)$ or $\mathrm{f}(-1)$. $\mathrm{f}(1)=1+1+2+a+b=7$ or $4+a+b=7 \Rightarrow a+b=3$ (as required) AG
(b)	Attempting $\mathrm{f}(-2)$ or $\mathrm{f}(2)$. M1 $\mathrm{f}(-2)=16-8+8-2 a+b=-8$ Solving both equations simultaneously to get as far as $a=\ldots$ or $b=\ldots$ A1 Any one of $a=9$ or $b=-6$ dM1 Both $a=9$ and $b=-6$ A1 A1 cso [5)
	Notes
(a)	M1 for attempting either $f(1)$ or $f(-1)$. A1 for applying $f(1)$, setting the result equal to 7 , and manipulating this correctly to give the result given on the paper as $a+b=3$. Note that the answer is given in part (a).
(b)	M1: attempting either $\mathrm{f}(-2)$ or $\mathrm{f}(2)$. A1: correct underlined equation in a and b; eg $\underline{16-8+8-2 a+b=-8}$ or equivalent, eg $-2 a+b=-24$. dM 1 : an attempt to eliminate one variable from 2 linear simultaneous equations in a and b. Note that this mark is dependent upon the award of the first method mark. A1: any one of $a=9$ or $b=-6$. A1: both $a=9$ and $b=-6$ and a correct solution only.
	Alternative Method of Long Division: (a) M1 for long division by $(x-1)$ to give a remainder in a and b which is independent of x. A1 for $\{$ Remainder $=\} b+a+4=7$ leading to the correct result of $a+b=3$ (answer given.) (b) M1 for long division by $(x+2)$ to give a remainder in a and b which is independent of x. A1 for $\{$ Remainder $=\} \underline{b-2(a-8)=-8}\{\Rightarrow-2 a+b=-24\}$. Then dM1A1A1 are applied in the same way as before.

Question Number	Scheme ${ }_{\text {a }}$ Marks
2. (a)	$11^{2}=8^{2}+7^{2}-(2 \times 8 \times 7 \cos C)$ $\cos C=\frac{8^{2}+7^{2}-11^{2}}{2 \times 8 \times 7}($ or equivalent $)$ $\{\hat{C}=1.64228 \ldots ..\} \Rightarrow \hat{C}=$ awrt 1.64\quad M1A1 A1 cso
(b)	
	Notes
(a)	M1 is also scored for $8^{2}=7^{2}+11^{2}-(2 \times 7 \times 11 \cos C)$ or $7^{2}=8^{2}+11^{2}-(2 \times 8 \times 11 \cos C)$ $\text { or } \cos C=\frac{7^{2}+11^{2}-8^{2}}{2 \times 7 \times 11} \quad \text { or } \quad \cos C=\frac{8^{2}+11^{2}-7^{2}}{2 \times 8 \times 11}$ $1^{\text {st }}$ A1: Rearranged correctly to make $\cos C=\ldots$ and numerically correct (possibly unsimplified). Award A1 for any of $\cos C=\frac{8^{2}+7^{2}-11^{2}}{2 \times 8 \times 7}$ or $\cos C=\frac{-8}{112}$ or $\cos C=-\frac{1}{14}$ or $\cos C=$ awrt -0.071 . SC: Also allow $1^{\text {st }} \mathrm{A} 1$ for $112 \cos C=-8$ or equivalent. Also note that the $1^{\text {st }} \mathrm{A} 1$ can be implied for $\hat{C}=$ awrt 1.64 or $\hat{C}=$ awrt 94.1°. Special Case: $\cos C=\frac{1}{14}$ or $\cos C=\frac{11^{2}-8^{2}-7^{2}}{2 \times 8 \times 7}$ scores a SC: M1A0A0. $2^{\text {nd }} \mathrm{A} 1$: for awrt 1.64 cao Note that $A=0.6876 . . .{ }^{c}$ (or $39.401 \ldots . .{ }^{\circ}$), $B=0.8116 . . .{ }^{c}$ (or 46.503... ${ }^{\circ}$)
(b)	M1: alternative methods must be fully correct to score the M1. For any (or both) of the M1 or the $1^{\text {st }} \mathrm{A} 1$; their C can either be in degrees or radians. Candidates who use $\cos C=\frac{1}{14}$ to give $C=1.499 \ldots$, can achieve the correct answer of awrt 27.9 in part (b). These candidates will score M1A1A0cso, in part (b). Finding $C=1.499$... in part (a) and achieving awrt 27.9 with no working scores M1A1A0. Otherwise with no working in part (b), awrt 27.9 scores M1A1A1. Special Case: If the candidate gives awrt 27.9 from any of the below then award M1A1A1. $\frac{1}{2}(7 \times 11) \sin \left(0.8116^{\mathrm{c}} \text { or } 46.503^{\circ}\right)=\text { awrt } 27.9, \frac{1}{2}(8 \times 11) \sin \left(0.6876 \ldots{ }^{\mathrm{c}} \text { or } 39.401 \ldots{ }^{\circ}\right)=\text { awrt } 27.9 .$ Alternative: Hero's Formula: $A=\sqrt{13(13-11)(13-8)(13-7)}=$ awrt 27.9 , where M1 is attempt to apply $A=\sqrt{s(s-11)(s-8)(s-7)}$ and the first A1 is for the correct application of the formula.

Question Number	Scheme	Marks
$3 . \quad$ (a)	ar $=750$ and $a r^{4}=-6$ (could be implied from later working in either (a) or (b)). $\begin{aligned} & r^{3}=\frac{-6}{750} \\ & r=-\frac{1}{5} \end{aligned}$ Correct answer from no working, except for special case below gains all three marks.	$\begin{array}{ll}\text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \\ \\ & \\ \text { P1) }\end{array}$
(b)	$\begin{aligned} & a(-0.2)=750 \\ & a\left\{=\frac{750}{-0.2}\right\}=-3750 \end{aligned}$	M1 A1 ft (2)
(c)	Applies $\frac{a}{1-r}$ correctly using both their a and their $\|r\|<1$. Eg. $\frac{-3750}{1--0.2}$ So, $S_{\infty}=-3125$	$\begin{array}{lr}\text { M1 } & \\ \text { A1 } & \\ & \\ & (2) \\ & \text { [7] }\end{array}$
	Notes	
(a)	B1: for both $a r=750$ and $a r^{4}=-6$ (may be implied from later working in either (a) or (b)). M1: for eliminating \boldsymbol{a} by either dividing $a r^{4}=-6$ by ar $=750$ or dividing ar $=750$ by $a r^{4}=-6$, to achieve an equation in r^{3} or $\frac{1}{r^{3}}$ Note that $r^{4}-r=-\frac{6}{750}$ is M0. Note also that any of $r^{3}=\frac{-6}{750}$ or $r^{3}=\frac{750}{-6}\{=-125\}$ or $\frac{1}{r^{3}}=\frac{-6}{750}$ or $\frac{1}{r^{3}}=\frac{750}{-6}\{=-125\}$ are fine for the award of M1. SC: $a r^{\alpha}=750$ and $a r^{\beta}=-6$ leading to $r^{\delta}=\frac{-6}{750}$ or $r^{\delta}=\frac{750}{-6}\{=-125\}$ or $\frac{1}{r^{\delta}}=\frac{-6}{750}$ or $\frac{1}{r^{\delta}}=\frac{750}{-6}\{=-125\}$ where $\delta=\beta-\alpha$ and $\delta \geq 2$ are fine for the award of M1. SC: $a r^{2}=750$ and $a r^{5}=-6$ leading to $r=-\frac{1}{5}$ scores B0M1A1.	
(b)	M1 for inserting their r into either of their original correct equations of either $a r=750$ or $\{a=\} \frac{750}{r}$ or $a r^{4}=-6$ or $\{a=\} \frac{-6}{r^{4}}$ - in both \boldsymbol{a} and \boldsymbol{r}. No slips allowed here for M1. A1 for either $a=-3750$ or a equal to the correct follow through result expressed either as an exact integer, or a fraction in the form $\frac{c}{d}$ where both c and d are integers, or correct to awrt 1 dp .	
(c)	M1 for applying $\frac{a}{1-r}$ correctly (only a slip in substituting r is allowed) using both their a and their $\|r\|<1$. Eg. $\frac{-3750}{1--0.2}$. A1 for -3125 In parts (a) or (b) or (c), the correct answer with no working scores full marks.	

Question Number	Scheme	Marks
4. (a)	Seeing -1 and 5. (See note below.)	B1 (1)
(b)	$\begin{aligned} & (x+1)(x-5)=\underline{x^{2}-4 x-5} \text { or } \underline{x^{2}-5 x+x-5} \\ & \left\{\left(x^{2}-4 x-5\right) \mathrm{d} x=\frac{x^{3}}{3}-\frac{4 x^{2}}{2}-5 x\{+c\}\right. \\ & {\left[\frac{x^{3}}{3}-\frac{4 x^{2}}{2}-5 x\right]_{-1}^{5}=(\ldots \ldots)-(\ldots . .)} \\ & \left\{\begin{array}{l} \left(\frac{125}{3}-\frac{100}{2}-25\right)-\left(-\frac{1}{3}-2+5\right) \\ =\left(-\frac{100}{3}\right)-\left(\frac{8}{3}\right)=-36 \end{array}\right\} \end{aligned}$ M: $x^{n} \rightarrow x^{n+1}$ for any one term. $1^{\text {st }} \mathrm{A} 1$ at least two out of three terms correctly ft. Substitutes 5 and -1 (or limits from part(a)) into an "integrated function" and subtracts, either way round. Hence, Area $=36$ Final answer must be 36 , not -36	B1 M1A1ft A1 dM1 A1 (6) [7]
	Notes	
(a)	B1: for -1 and 5. Note that $(-1,0)$ and $(5,0)$ are acceptable for B1. Also allow $(0,-1)$ and $(0,5)$ generously for B1. Note that if a candidate writes down that $A:(5,0), B:(-1,0)$, (ie A and B interchanged,) then B0. Also allow values inserted correct position on the x-axis of the graph.	the
(b)	B1 for $x^{2}-4 x-5$ or $x^{2}-5 x+x-5$. If you believe that the candidate is applying the method then $-x^{2}+4 x+5$ or $-x^{2}+5 x-x+5$ would then be fine for B1. $1^{\text {st }} \mathrm{M} 1$ for an attempt to integrate meaning that $x^{n} \rightarrow x^{n+1}$ for at least one of the term Note that $-5 \rightarrow 5 x$ is sufficient for M1. $1^{\text {st }} \mathrm{A} 1$ at least two out of three terms correctly ft from their multiplied out brackets. $2^{\text {nd }} \mathrm{A} 1$ for correct integration only and no follow through. Ignore the use of a ' $+c$ '. Allow $2^{\text {nd }} \mathrm{A} 1$ also for $\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+\frac{x^{2}}{2}-5 x$. Note that $-\frac{5 x^{2}}{2}+\frac{x^{2}}{2}$ only counts as one term for the $1^{\text {st }} \mathrm{A} 1$ mark. Do not allow any extra terms for the $2^{\text {nd }} \mathrm{A} 1$ mark. $2^{\text {nd }}$ M1: Note that this method mark is dependent upon the award of the first M1 ma (b). Substitutes 5 and -1 (and not 1 if the candidate has stated $x=-1$ in part (a).) (or the candidate has found from part(a)) into an "integrated function" and subtracts, eit round. $3^{\text {rd }} \mathrm{A} 1$: For a final answer of 36 , not -36 . Note: An alternative method exists where the candidate states from the outset that Area $(R)=-\int_{-1}^{5}\left(x^{2}-4 x+5\right) \mathrm{d} x$ is detailed in the Appendix.	Way 2 integrated k in part the limits er way

Question Number	Scheme					Marks
(a)	At $\{x=2.5\} y=$,0.30 (only) At $\{x=2.75\} y=$,0.24 (only)				$\frac{3}{0.2}$ At least one y-ordinate correct. Both y-ordinates correct.	B1 B1 (2)
(b)	$\begin{aligned} & \frac{1}{2} \times 0.25 ; \times\{\underline{\{0.5+0.2+2(0.38+\text { their } 0.30+\text { their } 0.24)\}} \\ & \left\{=\frac{1}{8}(2.54)\right\}=\text { awrt } 0.32 \end{aligned}$				Outside brackets $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ For structure of \square Correct expression inside brackets which all must be multiplied by their "outside constant". awrt 0.32	B1 aef M1 A1 $\sqrt{ }$ A1 (4)
(c)	$\begin{aligned} & \text { Area of triangle }=\frac{1}{2} \times 1 \times 0.2=0.1 \\ & \begin{aligned} \text { Area }(S) & =0.3175 "-0.1 \\ & =0.2175 \end{aligned} \end{aligned}$					B1 M1 Al ft (3) [9]

Question Number	Scheme	Marks
(b)	B1 for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ or equivalent. M1 requires the correct $\{.\}$. ordinate plus last y-ordinate and the second bracket to be the summation of the remaining y- ordinates in the table. No errors (eg. an omission of a y-ordinate or an extra y-ordinate or a repeated y-ordinate) are allowed in the second bracket and the second bracket must be multiplied by 2 . Only one copying error is allowed here in the $2(0.38+$ their $0.30+$ their 0.24$)$ bracket. A1ft for the correct bracket $\{\ldots . .$.$\} following through candidate’s y$-ordinates found in part (a). A1 for answer of awrt 0.32.	
Bracketing mistake: Unless the final answer implies that the calculation has been done correctly then award M1A0A0 for either $\frac{1}{2} \times 0.25 \times 0.5+2(0.38+$ their $0.30+$ their 0.24$)+0.2$ (nb: yielding final answer of 2.1025) so that the 0.5 is only multiplied by $\frac{1}{2} \times 0.25$		
or $\frac{1}{2} \times 0.25 \times(0.5+0.2)+2(0.38+$ their $0.30+$ their 0.24$)$		
(nb: yielding final answer of 1.9275$)$ so that the ($0.5+0.2)$ is multiplied by $\frac{1}{2} \times 0.25$.		
Need to see trapezium rule - answer only (with no working) gains no marks. Alternative: Separate trapezia may be used, and this can be marked equivalently. (See appendix.)		
(c)	B1 for the area of the triangle identified as either $\frac{1}{2} \times 1 \times 0.2$ or 0.1 . May be identified on the diagram. M1 for "part (b) answer" - " 0.1 only" or "part (b) answer - their attempt at 0.1 only". (Strict attempt!) A1ft for correctly following through "part (b) answer" -0.1. This is also dependent on the answer to (b) being greater than $0.1 . ~ N o t e: ~ c a n d i d a t e s ~ m a y ~ r o u n d ~ a n s w e r s ~ h e r e, ~ s o ~ a l l o w ~ A 1 f t ~ i f ~$ they round their answer correct to 2 dp.	

Question Number	Scheme ${ }^{\text {a }}$ (Marks
7.	$\begin{aligned} & 3 \sin ^{2} x+7 \sin x=\cos ^{2} x-4 ; 0 \leq x<360^{\circ} \\ & 3 \sin ^{2} x+7 \sin x=\left(1-\sin ^{2} x\right)-4 \\ & 4 \sin ^{2} x+7 \sin x+3=0 \quad \text { AG } \end{aligned}$
(b)	
	Notes
(a)	M1 for a correct method to change $\cos ^{2} x$ into $\sin ^{2} x$ (must use $\cos ^{2} x=1-\sin ^{2} x$). Note that applying $\cos ^{2} x=\sin ^{2} x-1$, scores M0. A1 for obtaining the printed answer without error (except for implied use of zero.), although the equation at the end of the proof must be $=\mathbf{0}$. Solution just written only as above would score M1A1.
(b)	$1^{\text {st }} \mathrm{M} 1$ for a valid attempt at factorisation, can use any variable here, s, y, x or $\sin x$, and an attempt to find at least one of the solutions. Alternatively, using a correct formula for solving the quadratic. Either the formula must be stated correctly or the correct form must be implied by the substitution. $1^{\text {st }} \mathrm{A} 1$ for the two correct values of $\sin x$. If they have used a substitution, a correct value of their s or their y or their x. $2^{\text {nd }} \mathrm{M} 1$ for solving $\sin x=-k, 0<k<1$ and realising a solution is either of the form $(180+\|\alpha\|)$ or $(360-\|\alpha\|)$ where $\alpha=\sin ^{-1}(k)$. Note that you cannot access this mark from $\sin x=-1 \Rightarrow x=270$. Note that this mark is dependent upon the $1^{\text {st }}$ M1 mark awarded. $2^{\text {nd }} \mathrm{A} 1$ for both awrt 228.6 and awrt 311.4 B1 for 270. If there are any EXTRA solutions inside the range $0 \leq x<360^{\circ}$ and the candidate would otherwise score FULL MARKS then withhold the final bA2 mark (the fourth mark in this part of the question). Also ignore EXTRA solutions outside the range $0 \leq x<360^{\circ}$. Working in Radians: Note the answers in radians are $x=3.9896 \ldots, 5.4351 \ldots, 4.7123 \ldots$ If a candidate works in radians then mark part (b) as above awarding the $2^{\text {nd }}$ A1 for both awrt 4.0 and awrt 5.4 and the B1 for awrt 4.7 or $\frac{3 \pi}{2}$. If the candidate would then score FULL MARKS then withhold the final bA2 mark (the fourth mark in this part of the question.) No working: Award B1 for 270 seen without any working. Award M0A0M1A1 for awrt 228.6 and awrt 311.4 seen without any working. Award M0A0M1A0 for any one of awrt 228.6 or awrt 311.4 seen without any working.

Question Number	Scheme	Marks
8. (a)	Graph of $y=7^{x}, x \in \mathbb{R}$ and solving $7^{2 x}-4\left(7^{x}\right)+3=0$ At least two of the three criteria correct. (See notes below.) All three criteria correct. (See notes below.)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \\ & \\ & \\ & \\ & \\ & \text { (2) }\end{aligned}$
(b)	Forming a quadratic \{using $\begin{aligned} & y^{2}-4 y+3\{=0\} \\ & \begin{array}{l} \left\{(y-3)(y-1)=0 \text { or }\left(7^{x}-3\right)\left(7^{x}-1\right)=0\right\} \\ \begin{array}{l} y=3, \quad y=1 \quad \text { or } \quad 7^{x}=3,7^{x}=1 \end{array} \\ \left\{7^{x}=3 \Rightarrow\right\} x \log 7=\log 3 \\ \text { or } x=\frac{\log 3}{\log 7} \text { or } x=\log _{7} 3 \end{array} \\ & \begin{array}{l} x=0.5645 \ldots \\ x=0 \end{array} \end{aligned}$ $\begin{array}{r} \left." y "=7^{x}\right\} \\ y^{2}-4 y+3\{=0\} \end{array}$ Both $y=3$ and $y=1$. A valid method for solving $7^{x}=k$ where $k>0, k \neq 1$ 0.565 or awrt 0.56 $x=0$ stated as a solution.	M1 A1 A1 dM1 A1 B1 (6) $[8]$
	Notes	
(a)	B1B0: Any two of the following three criteria below correct. B1B1: All three criteria correct. Criteria number 1: Correct shape of curve for $x \geq 0$. Criteria number 2: Correct shape of curve for $x<0$. Criteria number 3: $(0,1)$ stated or 1 marked on the y-axis. Allow $(1,0)$ rather than $(0,1)$ marked in the "correct" place on the y-axis.	if

Question Number	Scheme ${ }^{\text {a }}$
(b)	$1^{\text {st }}$ M1 is an attempt to form a quadratic equation \{using " y " $=7^{x}$. \} $1^{\text {st }} \mathrm{A} 1$ mark is for the correct quadratic equation of $y^{2}-4 y+3\{=0\}$. Can use any variable here, eg: y, x or 7^{x}. Allow M1A1 for $x^{2}-4 x+3\{=0\}$. Writing $\left(7^{x}\right)^{2}-4\left(7^{x}\right)+3=0$ is also sufficient for M1A1. Award M0A0 for seeing $7^{x^{2}}-4\left(7^{x}\right)+3=0$ by itself without seeing $y^{2}-4 y+3\{=0\}$ or $\left(7^{x}\right)^{2}-4\left(7^{x}\right)+3=0$. $1^{\text {st }} \mathrm{A} 1$ mark for both $y=3$ and $y=1$ or both $7^{x}=3$ and $7^{x}=1$. Do not give this accuracy mark for both $x=3$ and $x=1$, unless these are recovered in later working by candidate applying logarithms on these. Award M1A1A1 for $7^{x}=3$ and $7^{x}=1$ written down with no earlier working. $3^{\text {rd }} \mathrm{dM} 1$ for solving $7^{x}=k, k>0, k \neq 1$ to give either $x \ln 7=\ln k$ or $x=\frac{\ln k}{\ln 7}$ or $x=\log _{7} k$. dM1 is dependent upon the award of M1. $2^{\text {nd }} \mathrm{A} 1$ for 0.565 or awrt 0.56 . B 1 is for the solution of $x=0$, from any working.

Question Number	Scheme	Marks
9. $\begin{array}{rr} \\ & \text { (a) } \\ & \text { (b) }\end{array}$	$\left.\begin{array}{\|cr} C\left(\frac{-2+8}{2}, \frac{11+1}{2}\right)=C(3,6) \text { AG } & \begin{array}{r} \text { Correct method (no errors) for finding } \\ \text { the mid-point of } A B \text { giving }(3,6) \end{array} \\ (8-3)^{2}+(1-6)^{2} \text { or } \sqrt{(8-3)^{2}+(1-6)^{2}} \text { or } & \begin{array}{r} \text { Applies distance formula in } \\ \text { order to find the radius. } \\ \text { Correct application of } \\ \text { formula. } \end{array} \\ (-2-3)^{2}+(11-6)^{2} \text { or } \sqrt{(-2-3)^{2}+(11-6)^{2}} & (x \pm 3)^{2}+(y \pm 6)^{2}=k, \\ k \text { is a positive value. } \end{array} \quad \begin{array}{rr} & \left.(x-3)^{2}+(y-6)^{2}=50 \text { (Not } 7.07^{2}\right) \end{array}\right)$	(1) M1 A1 M1 A1 (4)
(c)	$\{$ For $(10,7),\} \quad(10-3)^{2}+(7-6)^{2}=50$,	(1)
(d)	$\begin{array}{lr} \text { \{Gradient of radius }\}=\frac{7-6}{10-3} \text { or } \frac{1}{7} & \text { This must be seen in part }(\mathrm{d}) . \\ \text { Gradient of tangent }=\frac{-7}{1} & \text { Using a perpendicular gradient method. } \\ y-7=-7(x-10) & \begin{array}{rl} y-7=(\text { their gradient })(x-10) \\ y=-7 x+77 & y=-7 x+77 \text { or } y=77-7 x \end{array} \end{array}$	B1 M1 M1 A1 cao (4) [10]
	Notes	
(a)	Alternative method: $C\left(-2+\frac{8--2}{2}, 11+\frac{1-11}{2}\right)$ or $C\left(8+\frac{-2-8}{2}, 1+\frac{11-1}{2}\right)$	
(b)	You need to be convinced that the candidate is attempting to work out the radius and not the diameter of the circle to award the first M1. Therefore allow $1^{\text {st }} \mathrm{M} 1$ generously for $\frac{(-2-8)^{2}+(11-1)^{2}}{2}$ Award $1^{\text {st }}$ M1A1 for $\frac{(-2-8)^{2}+(11-1)^{2}}{4}$ or $\frac{\sqrt{(-2-8)^{2}+(11-1)^{2}}}{2}$. Correct answer in (b) with no working scores full marks.	
(c)	B1 awarded for correct verification of $(10-3)^{2}+(7-6)^{2}=50$ with no errors. Also to gain this mark candidates need to have the correct equation of the circle either from part (b) or re-attempted in part (c). They cannot verify $(10,7)$ lies on C without a correct C. Also a candidate could either substitute $x=10$ in C to find $y=7$ or substitute $y=7$ in C to find $x=10$.	

Question Number	Scheme \quad Marks
(d)	$2^{\text {nd }}$ M1 mark also for the complete method of applying $7=($ their gradient)(10) $+c$, finding c. Note: Award $2^{\text {nd }} \mathrm{M} 0$ in (d) if their numerical gradient is either 0 or ∞. Alternative: For first two marks (differentiation): $2(x-3)+2(y-6) \frac{\mathrm{d} y}{\mathrm{~d} x}=0$ (or equivalent) scores B1. $1^{\text {st }}$ M1 for substituting both $x=10$ and $y=7$ to find a value for $\frac{\mathrm{d} y}{\mathrm{~d} x}$, which must contain both x and y. (This M mark can be awarded generously, even if the attempted "differentiation" is not "implicit".) Alternative: $(10-3)(x-3)+(7-6)(y-6)=50$ scores B1M1M1 which leads to $y=-7 x+77$.

Question Number	Scheme	Marks
10. (a)	$V=4 x(5-x)^{2}=4 x\left(25-10 x+x^{2}\right)$ So, $V=100 x-40 x^{2}+4 x^{3}$ $\pm \alpha x \pm \beta x^{2} \pm \gamma x^{3}$, where $\alpha, \beta, \gamma \neq 0$ $V=100 x-40 x^{2}+4 x^{3}$ $\frac{\mathrm{d} V}{\mathrm{~d} x}=100-80 x+12 x^{2}$ At least two of their expanded terms differentiated correctly. $100-80 x+12 x^{2}$	M1 A1 M1 A1 cao (4)
(b)	$\begin{array}{lr} 100-80 x+12 x^{2}=0 & \text { Sets their } \frac{\mathrm{d} V}{\mathrm{~d} x} \text { from part (a) }=0 \\ \left\{\Rightarrow 4\left(3 x^{2}-20 x+25\right)=0 \Rightarrow 4(3 x-5)(x-5)=0\right\} & x=\frac{5}{3} \text { or } x=\text { awrt } 1.67 \\ \{\text { As } 0<x<5\} x=\frac{5}{3} & \text { Substitute candidate's value of } x \\ x=\frac{5}{3}, V=4\left(\frac{5}{3}\right)\left(5-\frac{5}{3}\right)^{2} & \text { where } 0<x<5 \text { into a formula for } V . \\ \text { So, } V=\frac{2000}{27}=74 \frac{2}{27}=74.074 \ldots & \text { Either } \frac{2000}{27} \text { or } 74 \frac{2}{27} \text { or awrt } 74.1 \end{array}$	M1 A1 dM1 A1 (4)
(c)	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-80+24 x \quad$ Differentiates their $\frac{\mathrm{d} V}{\mathrm{~d} x}$ correctly to give $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$. When $x=\frac{5}{3}, \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}=-80+24\left(\frac{5}{3}\right)$ $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-40<0 \Rightarrow V$ is a maximum $\quad \frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-40$ and ≤ 0 or negative and maximum.	M1 A1 cso (2) [10]
	Notes	
(a)	$1^{\text {st }} \mathrm{M} 1$ for a three term cubic in the form $\pm \alpha x \pm \beta x^{2} \pm \gamma x^{3}$. Note that an un-combined $\pm \alpha x \pm \lambda x^{2} \pm \mu x^{2} \pm \gamma x^{3}, \alpha, \lambda, \mu, \gamma \neq 0$ is fine for the $1^{\text {st }} \mathrm{M} 1$. $1^{\text {st }} \mathrm{A} 1$ for either $100 x-40 x^{2}+4 x^{3}$ or $100 x-20 x^{2}-20 x^{2}+4 x^{3}$. $2^{\text {nd }}$ M1 for any two of their expanded terms differentiated correctly. NB: If expanded expression is divided by a constant, then the $2^{\text {nd }} \mathrm{M} 1$ can be awarded for at least two terms are correct. Note for un-combined $\pm \lambda x^{2} \pm \mu x^{2}, \pm 2 \lambda x \pm 2 \mu x$ counts as one term differentiated correctly. $2^{\text {nd }}$ A1 for $100-80 x+12 x^{2}$, cao. Note: See appendix for those candidates who apply the product rule of differentiation.	

Question Number	Scheme \quad Marks
(b)	Note you can mark parts (b) and (c) together. Ignore the extra solution of $x=5$ (and $V=0$). Any extra solutions for V inside found for values inside the range of x, then award the final A0.
(c)	M1 is for their $\frac{\mathrm{d} V}{\mathrm{~d} x}$ differentiated correctly (follow through) to give $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$. A1 for all three of $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-40$ and <0 or negative and maximum. Ignore any second derivative testing on $x=5$ for the final accuracy mark. Alternative Method: Gradient Test: M1 for finding the gradient either side of their x-value from part (b) where $0<x<5$. A1 for both gradients calculated correctly to the near integer, using >0 and <0 respectively or a correct sketch and maximum. (See appendix for gradient values.)

Question Number	Scheme		Marks
Aliter 6 (b) Way 2	$0.25 \times\left\{\frac{0.5+0.38}{2}+\frac{0.38+0.30}{2}+\frac{0.30+0.24}{2}+\frac{0.24+0.2}{2}\right\}$ which is equivalent to: $\begin{aligned} & \frac{1}{2} \times 0.25 ; \times\{(0.5+0.2)+2(0.38+\text { their } 0.30+\text { their } 0.24)\} \\ & \left\{=\frac{1}{8}(2.54)\right\}=\text { awrt } 0.32 \end{aligned}$	0.25 and a divisor of 2 on all terms inside brackets. One of first and last ordinates, two of the middle ordinates inside brackets ignoring the denominator of 2 . Correct expression inside brackets if $\frac{1}{2}$ was to be factorised out. awrt 0.32	B1 M1 A1 $\sqrt{ }$ A1 (4)

Question Number	Scheme	Marks
Aliter $\mathbf{1 0}$ (c) Way 2	Gradient Test Method: $\frac{\mathrm{d} V}{\mathrm{~d} x}=100-80 x+12 x^{2}$ Helpful table!	

Question Number	Scheme	Marks
8 (b)	Method of trial and improvement Helpful table:	
	x $y=7^{2 x}-4\left(7^{x}\right)+3$	
	0 0	
	0.1 -0.38348	
	0.2	
	0.3 -0.95706	
	0.4 -0.96835	
	0.5 -0.58301	
	0.51 -0.51316	
	0.52 -0.43638	
	0.53 -0.3523	
	0.54	
	0.55	
	0.56 -0.05247	
	0.561 -0.04116	
	0.562 -0.02976	
	0.563	
	0.564	
	0.565 0.00497	
	0.57 0.064688	
	0.58 0.19118	
	0.59 0.327466	
	0.6 0.474029	
	0.7 2.62723	
	0.8 6.525565	
	0.9 13.15414	
	1 24	
	For a full method of trial and improvement by trialing $\mathrm{f}($ value between 0.1 and 0.5645$)=$ value and $\mathrm{f}($ value between 0.5645 and 1$)=$ value Any one of these values correct to 1 sf or truncated 1 sf . Both of these values correct to 1sf or truncated 1sf. A method to confirm root to 2 dp by finding by trialing f (value between 0.56 and 0.5645) $=$ value and $\mathrm{f}($ value between 0.5645 and 0.565$)=$ value Both values correct to 1 sf or truncated 1 sf and the confirmation that the root is $\begin{aligned} & x=0.56 \text { (only) } \\ & x=0 \end{aligned}$	M1
		A1
		A1
		M1
		A1
		B1 (6)
Note: If a candidate goes from $7^{x}=3$ with no working to $x=0.5645 \ldots$ then give M1A1 implied.		

www.igexams.com

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code US026235 J anuary 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

