edexcel

Mark Scheme (Results)
January 2012
GCE Mathematics
Core Mathematics 2 (6664)

www.igexams.com

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our qualifications website at www.edexcel.com. For information about our BTEC qualifications, please call 0844576 0026, or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2012
Publications Code US030307
All the material in this publication is copyright
© Pearson Education Ltd 2012
(But the particular mark scheme always takes precedence)

Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|, \quad$ leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$
2. Formula

Attempt to use correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0, \quad$ leading to $\mathrm{x}=\ldots$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values (but refer to the mark scheme first... the application of this principle may vary). Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but will be lost if there is any mistake in the working.

Equation of a straight line

Apply the following conditions to the M mark for the equation of a line through (a, b) :
If the a and b are the wrong way round the M mark can still be given if a correct formula is seen,
(e.g. $\left.y-y_{1}=m\left(x-x_{1}\right)\right)$ otherwise MO.

If (a, b) is substituted into $y=m x+c$ to find c , the M mark is for attempting this.

Answers without working

The rubric says that these may gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.
These are not common. In clear cases, please deduct the first 2 A (or B) marks which would have been lost by following the scheme. (Note that 2 marks is the maximum misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).
Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written. If in doubt, send the response to Review.
advancing learning, changing lives

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

wWw.igexams.com

advancing learning, changing lives

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- \quad The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark
advancing learning, changing lives

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. Marks for each question are scored by clicking in the marking grids that appear below each student response on ePEN. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of ' 0 ' or ' 1 ' for each mark, or "trait", as shown:

	0	1
aM		\bullet
aA	\bullet	
bM 1		\bullet
bA 1	\bullet	
bB	\bullet	
bM 2		\bullet
bA 2		\bullet

9. Be careful when scoring a response that is either all correct or all incorrect. It is very easy to click down the ' 0 ' column when it was meant to be ' 1 ' and all correct.

J anuary 2012
 C2 6664
 Mark Scheme

Question number	Scheme	Marks
$\mathbf{2}$	The equation of the circle is $(x+1)^{2}+(y-7)^{2}=\left(r^{2}\right)$ The radius of the circle is $\sqrt{(-1)^{2}+7^{2}}=\sqrt{50}$ or $5 \sqrt{2}$ or $r^{2}=50$ So $(x+1)^{2}+(y-7)^{2}=50$ or equivalent	M1 A1
	M1 Notes M1 is for Pythagoras or substitution into equation of circle to give r or r^{2} Giving this value as diameter is M0 A1, cao for cartesian equation with numerical values but allow $(\sqrt{ } 50)^{2}$ or $(5 \sqrt{2})^{2}$ or any exact equivalent A correct answer implies a correct method - so answer given with no working earns all four marks for this question.	
Alternative method	Equation of circle is $x^{2}+y^{2} \pm 2 x \pm 14 y+c=0$ Equation of circle is $x^{2}+y^{2}+2 x-14 y+c=0$ Uses $(0,0)$ to give $c=0$, or finds $r=\sqrt{(-1)^{2}+7^{2}}=\sqrt{50}$ or $5 \sqrt{2}$ or $r^{2}=50$ So $x^{2}+y^{2}+2 x-14 y=0$ or equivalent	M1
A1		

\begin{tabular}{|c|c|}
\hline Question number \& Scheme ${ }^{\text {arks }}$

\hline 3 (a).

(b) \&

\hline $$
\begin{gathered}
\text { Alternative } \\
\text { for (b) } \\
\text { Special case }
\end{gathered}
$$ \& Starts again and expands $(1+0.025)^{8}$ to

$$
\begin{array}{l|l}
1+8 \times 0.025+\frac{8 \times 7}{2}(0.025)^{2}+\frac{8 \times 7 \times 6}{2 \times 3}(0.025)^{3},=1.2184 & \text { B1,M1,A1 } \\
(\text { Or } 1+1 / 5+7 / 400+7 / 8000=1.2184) & \\
\hline
\end{array}
$$

\hline Notes \& | (a) B1 must be simplified |
| :--- |
| The method mark (M1) is awarded for an attempt at Binomial to get the third and/or fourth term - need correct binomial coefficient combined with correct power of x. Ignore bracket errors or errors in powers of 4 . Accept any notation for ${ }^{8} C_{2}$ and ${ }^{8} C_{3}$, e.g. $\binom{8}{2}$ and $\binom{8}{3}$ (unsimplified) or 28 and 56 from Pascal's triangle. (The terms may be listed without + signs) |
| First A1 is for two completely correct unsimplified terms |
| A1 needs the fully simplified $\frac{7}{4} x^{2}$ and $\frac{7}{8} x^{3}$. |
| (b) B1 - states or uses $x=0.1$ or $\frac{x}{4}=\frac{1}{40}$ |
| M1 for substituting their value of $x(0<\mathrm{x}<1)$ into expansion |
| (e.g. 0.1 (correct) or $0.01,0.00625$ or even 0.025 but not 1 nor 1.025 which would earn M0) |
| A1 Should be answer printed cao (not answers which round to) and should follow correct work. |
| Answer with no working at all is B0, M0, A0 |
| States 0.1 then just writes down answer is B1 M0A0 |

\hline
\end{tabular}

Question number	Scheme ${ }^{\text {a }}$ Marks
4. (a) (b)	$\log _{3} 3 x^{2}=\log _{3} 3+\log _{3} x^{2}$ or $\log y-\log x^{2}=\log 3$ or B1 $\log y-\log 3=\log x^{2}$ B1 $\log _{3} x^{2}=2 \log _{3} x$ B1 Using $\log _{3} 3=1$ (3) $3 x^{2}=28 x-9$ M1 Solves $3 x^{2}-28 x+9=0$ to give $x=\frac{1}{3}$ or $x=9$ M1 A1 (3)
Notes (a) (b)	B1 for correct use of addition rule (or correct use of subtraction rule) B1: replacing $\log x^{2}$ by $2 \log x \quad-$ not $\log 3 x^{2}$ by $2 \log 3 x$ this is $\mathbf{B 0}$ These first two B marks are often earned in the first line of working B1. for replacing $\log 3$ by $1 \quad$ (or use of $3^{1}=3$) If candidate has been awarded 3 marks and their proof includes an error or omission of reference to $\log y$ withhold the last mark. So just B1 B1 B0 These marks must be awarded for work in part (a) only M1 for removing logs to get an equation in x-statement in scheme is sufficient. This needs to be accurate without any errors seen in part (b). M1 for attempting to solve three term quadratic to give $x=$ (see notes on marking quadratics) A1 for the two correct answers - this depends on second M mark only. Candidates often begin again in part (b) and do not use part (a). If such candidates make errors in log work in part (b) they score first M0. The second \mathbf{M} and the A are earned as before. It is possible to get M0M1A1 or M0M1A0.
Alternative to (b) using y	Eliminates x to give $3 y^{2}-730 y+243=0$ with no errors is M1 Solves quadratic to find y, then uses values to find x M1 A1 as before See extra sheet with examples illustrating the scheme.

Question number	Scheme	Marks
7 (a)	$r \theta=6 \times 0.95,=5.7 \quad(\mathrm{~cm})$	$\mathrm{M} 1, \mathrm{~A} 1$ (2)
(b)	$\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 6^{2} \times 0.95,=17.1\left(\mathrm{~cm}^{2}\right)$	$\mathrm{M} 1, \mathrm{~A} 1$ (2)
(c)	Let $A D=x$ then $\frac{x}{\sin 0.95}=\frac{6}{\sin 1.24}$ so $x=5.16$	1
	OR $\quad x=3 / \cos 0.95$ OR so $x=3 / \sin 0.62$ so $x=5.16$ *	(2)
(d)	OR $x^{2}=6^{2}+x^{2}-12 x \cos 0.95$ leading to $x=$, so $x=5.16 *$ Perimeter $=‘ 5.7 ’+5.16+6-5.16=" 11.7 " \quad$ or $6+$ their 5.7	M1A1 ft (2)
(e)	Area of triangle $A B D=\frac{1}{2} \times 6 \times 5.16 \times \sin 0.95=12.6$ or $\frac{1}{2} \times 6 \times 3 \times \tan 0.95=12.6\left(1 / 2\right.$ base x height) or $\frac{1}{2} \times 5.16 \times 5.16 \times \sin 1.24=12.6$ So Area of $R=$ ' 17.1 ' $-{ }^{\prime} 12.6$ ' $=4.5$	M1 A1
		M1 A1
		(4) 12
Notes	(a) M1: Needs θ in radians for this formula. Could convert to degrees and use degrees formula.	
	(b) M1: Needs θ in radians for this formula. Could convert to degrees and use degrees formula. A1: Does not need units	
	(c) M1: Needs complete correct trig method to achieve $x=$	
	May have worked in degrees, using 54.4 degrees and 71.1 degrees	
	Using angles of triangle sum to 360 degrees is not correct method so is M0 A1: accept answers which round to 5.16 (NB This is given answer)	
	If the answer 5.16 is assumed and verified award M1A0 for correct work	
	(d) M1: Accept answer only as implying method, or just $6+5.7$	
	A1 : can be scored even following wrong answer to part (c) (e) M1: needs complete method for area of triangle $A B D$ not $A B C$ A1: Accept awrt 12.6 (If area of triangle is not evaluated or is given as 12.5 (truncated)	
Alternative	Finds area of segment and area of triangle $B D C$ by correct methods M1	
For part (e)	Uses area of segment + area of triangle $B D C$,to obtain 4.5 (not 4.6) M1, A1 NB Just finding area of segment is M0	

Question number	Scheme	Marks
9 (i)	$\sin (3 x-15)=\frac{1}{2} \text { so } 3 x-15=30 \quad(\alpha) \text { and } x=15$ Need $3 x-15=180-\alpha$ or $3 x-15=540-\alpha$ Need $3 x-15=180-\alpha$ and $3 x-15=360+\alpha$ and $3 x-15=540-\alpha$ $x=55$ or 175 $x=55,135,175$	M1 A1 M1 M1 A1 A1 (6)
Notes	M1 Correct order of operation: inverse sine then linear algebra - not just $3 x-15=30$ (slips in linear algebra lose Accuracy mark) A1 Obtains first solution 15 M1 Uses either $180-\alpha$ or $540-\alpha$, M1 uses all three $180-\alpha$ and $360+\alpha$ and $540-\alpha$ A1, for one further correct solution 55 or 175, (depends only on second M1) A1 - all 3 further correct solutions If more than 4 solutions in range, lose last A1 Common slips: Just obtains 15 and 55, or 15 and 175 - usually M1A1M1M0A1A0 Just obtains 15 and 135 is usually M1A1M0M0A0A0 (It is easy to get this erroneously) Obtains $5,45,125$ and 165 - usually M1A0M1M1A0A0 Obtains $25,65,145$, (185) usually M1A0M1M1A0A0 Working in radians - lose last A1 earned for $\frac{\pi}{12}, \frac{11 \pi}{36}, \frac{3 \pi}{4}$ and $\frac{35 \pi}{36}$ or numerical equivalents Mixed radians and degrees is usually Method marks only Methods involving no working should be sent to Review	
9 (ii)	At least one of $\begin{array}{llll} \text { of } & \begin{array}{ll} \left(\frac{a \pi}{10}-b\right)=0(\text { or } n \pi) & \\ & \left(\frac{a 3 \pi}{5}-b\right)=\pi \end{array} & \{\text { or }(n+1) \pi\} & \text { or in degrees } \\ \text { or } & \left(\frac{a 11 \pi}{10}-b\right)=2 \pi & \{\text { or }(n+2) \pi\} \end{array}$ If two of above equations used eliminates a or b to find one or both of these or uses period property of curve to find a or uses other valid method to find either a or $b \quad$ (May see $\frac{5 \pi}{10} a=\pi$ so $a=$) Obtains $a=2$ Obtains $b=\frac{\pi}{5}$ (must be in radians)	M1 A1 A1

advancing learning, changing lives

Notes	M1: Award for $\left(\frac{a \pi}{10}-b\right)=0$ or $\frac{a \pi}{10}=b$ BUT $\sin \left(\frac{a \pi}{10}-b\right)=0$ is M0
	M1: As described above but solving $\left(\frac{a \pi}{10}-b\right)=0 \quad$ with $\left(\frac{a 3 \pi}{5}-b\right)=0$ is M0 (It gives $\left.a=b=0\right)$
	Special cases: Can obtain full marks here for both correct answers with no working M1M1A1A1 For $a=2$ only, with no working, award M0M1A1A0 For $b=\frac{\pi}{5}$ only with no working M1M0A0A1
Alternative	Some use translations and stretches to give answers. If they achieve $a=2$ they earn second method and first accuracy. If they achieve correct value for b they earn first method and second accuracy. Common error is $a=2$ and $b=\frac{\pi}{10}$.
	$\left.\begin{array}{l}(\text { This is usually M0M1A1A0 unless they have stated } \\ 10\end{array}-b\right)=0$ earlier in which case they earn first M1.

www.igexams.com

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code US030307 J anuary 2012

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

