Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6664/ 01)

J une 2009

6664 Core Mathematics C2

Mark Scheme

Question Number	Scheme ${ }^{\text {S }}$
Q1	$\begin{aligned} & \int\left(2 x+3 x^{\frac{1}{2}}\right) \mathrm{d} x=\frac{2 x^{2}}{2}+\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}} \\ & \begin{aligned} \int_{1}^{4}\left(2 x+3 x^{\frac{1}{2}}\right) \mathrm{d} x & =\left[x^{2}+2 x^{\frac{3}{2}}\right]_{1}^{4}=(16+2 \times 8)-(1+2) \\ & =29 \end{aligned} \end{aligned}$ M1 A1A1
	$1^{\text {st }}$ M1 for attempt to integrate $x \rightarrow k x^{2}$ or $x^{\frac{1}{2}} \rightarrow k x^{\frac{3}{2}}$. $1^{\text {st }} \mathrm{A} 1$ for $\frac{2 x^{2}}{2}$ or a simplified version. $2^{\text {nd }} \mathrm{A} 1$ for $\frac{3 x^{\frac{3}{2}}}{(3 / 2)}$ or $\frac{3 x \sqrt{x}}{(3 / 2)}$ or a simplified version. Ignore $+C$, if seen, but two correct terms and an extra non-constant term scores M1A1A0. $2^{\text {nd }}$ M1 for correct use of correct limits ('top' - 'bottom'). Must be used in a 'changed function', not just the original. (The changed function may have been found by differentiation). Ignore 'poor notation' (e.g. missing integral signs) if the intention is clear. No working: The answer 29 with no working scores M0A0A0M1A0 (1 mark).

Question Number	Scheme Marks
(a) (b)	
(a)	The terms can be 'listed' rather than added. Ignore any extra terms. M1 for either the x term or the x^{2} term. Requires correct binomial coefficient in any form with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or k) may be wrong or missing. Allow binomial coefficients such as $\binom{7}{1},\binom{7}{1},\binom{7}{2},{ }^{7} C_{1},{ }^{7} C_{2}$. However, $448+k x$ or similar is M0. B1, A1, A1 for the simplified versions seen above. Alternative: Note that a factor 2^{7} can be taken out first: $2^{7}\left(1+\frac{k x}{2}\right)^{7}$, but the mark scheme still applies. Ignoring subsequent working (isw): Isw if necessary after correct working: e.g. $128+448 k x+672 k^{2} x^{2} \quad$ M1 B1 A1 A1 $=4+14 k x+21 k^{2} x^{2} \quad$ isw (Full marks are still available in part (b)). M1 for equating their coefficient of x^{2} to 6 times that of $x \ldots$ to get an equation in k, \ldots or equating their coefficient of x to 6 times that of x^{2}, to get an equation in k. Allow this M mark even if the equation is trivial, providing their coefficients from part (a) have been used, e.g. $6 \times 448 k=672 k$, but beware $k=4$ following from this, which is A0. An equation in k alone is required for this M mark, so... e.g. $6 \times 448 k x=672 k^{2} x^{2} \Rightarrow k=4$ or similar is M0 A0 (equation in coefficients only is never seen), but ... e.g. $6 \times 448 k x=672 k^{2} x^{2} \Rightarrow 6 \times 448 k=672 k^{2} \Rightarrow k=4$ will get M1 A1 (as coefficients rather than terms have now been considered). The mistake $2\left(1+\frac{k x}{2}\right)^{7}$ would give a maximum of 3 marks: M1B0A0A0, M1A1

Question Number	Scheme ${ }^{\text {S }}$ Marks
Q3 (a) (b) (c)	$\begin{equation*} \mathrm{f}(\mathrm{k})=-8 \tag{1} \end{equation*}$ $\mathrm{f}(2)=4 \Rightarrow \quad 4=(6-2)(2-k)-8$ So $\quad k=-1$ $\begin{aligned} f(x) & =3 x^{2}-(2+3 k) x+(2 k-8)=3 x^{2}+x-10 \\ & =(3 x-5)(x+2) \end{aligned}$
(b)	M1 for substituting $x=2$ (not $x=-2$) and equating to 4 to form an equation in k. If the expression is expanded in this part, condone 'slips' for this M mark. Treat the omission of the -8 here as a 'slip' and allow the M mark. Beware: Substituting $x=-2$ and equating to 0 (M0 A0) also gives $k=-1$. Alternative; M1 for dividing by $(x-2)$, to get $3 x+($ function of k), with remainder as a function of k, and equating the remainder to 4 . [Should be $3 x+(4-3 k)$, remainder $-4 k$]. No working: $k=-1$ with no working scores M0 A0. $1^{\text {st }}$ M1 for multiplying out and substituting their (constant) value of k (in either order). The multiplying-out may occur earlier. Condone, for example, sign slips, but if the 4 (from part (b)) is included in the $f(x)$ expression, this is M0. The $2^{\text {nd }} \mathrm{M} 1$ is still available. $2^{\text {nd }} \mathrm{M} 1$ for an attempt to factorise their three term quadratic (3TQ). A1 The correct answer, as a product of factors, is required. Allow $3\left(x-\frac{5}{3}\right)(x+2)$ Ignore following work (such as a solution to a quadratic equation). If the 'equation' is solved but factors are never seen, the $2^{\text {nd }} M$ is not scored.

Question Number	Scheme Marks
Q4 (a) (b) (c)	
(b)	B1 for $\frac{1}{2} \times \frac{1}{2}$ or equivalent. For the M mark, the first bracket must contain the 'first and last' values, and the second bracket (which must be multiplied by 2) must have no additional values. If the only mistake is to omit one of the values from the second bracket, this can be considered as a slip and the M mark can be allowed. Bracketing mistake: i.e. $\left(\frac{1}{2} \times \frac{1}{2}\right)(1.414+3)+2(1.554+1.732+1.957+2.236+2.580)$ scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks can be given). Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{4}(1.414+1.554)+\frac{1}{4}(1.554+1.732)+\ldots+\frac{1}{4}(2.580+3)\right]$ $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for correct expression, ft their 2.236 and their 2.580 $1^{\text {st }} \mathrm{B} 1$ for 'overestimate', ignoring earlier mistakes and ignoring any reasons given. $2^{\text {nd }} \mathrm{B} 1$ is dependent upon the $1^{\text {st }} \mathrm{B} 1$ (overestimate).

Question Number	Scheme Marks
Q5 (a) (b) (c) (d)	
(a) (b) (c) (d) (d)	M1 for forming an equation for r^{3} based on 96 and 324 (e.g. $96 r^{3}=324$ scores M1). The equation must involve multiplication/division rather than addition/subtraction. A1 Do not penalise solutions with working in decimals, providing these are correctly rounded or truncated to at least 2 dp and the final answer $2 / 3$ is seen. Alternative: (verification) M1 Using $r^{3}=\frac{8}{27}$ and multiplying 324 by this (or multiplying by $r=\frac{2}{3}$ three times). A1 Obtaining 96 (cso). (A conclusion is not required). $324 \times\left(\frac{2}{3}\right)^{3}=96$ (no real evidence of calculation) is not quite enough and scores M1 A0. M1 for the use of a correct formula or for 'working back' by dividing by $\frac{2}{3}$ (or by their r) twice from 324 (or 5 times from 96). Exceptionally, allow M1 also for using $a r^{3}=324$ or $a r^{6}=96$ instead of $a r^{2}=324$ or $a r^{5}=96$, or for dividing by r three times from 324 (or 6 times from 96)... but no other exceptions are allowed. M1 for use of sum to 15 terms formula with values of a and r. If the wrong power is used, e.g. 14, the M mark is scored only if the correct sum formula is stated. $1^{\text {st }}$ A1ft for a correct expression or correct ft their a with $r=\frac{2}{3}$. $2^{\text {nd }}$ A1 for awrt 2180, even following 'minor inaccuracies'. Condone missing brackets round the $\frac{2}{3}$ for the marks in part (c). Alternative: M1 for adding 15 terms and $1^{\text {st }}$ A1ft for adding the 15 terms that ft from their a and $r=\frac{2}{3}$. M1 for use of correct sum to infinity formula with their a. For this mark, if a value of r different from the given value is being used, M1 can still be allowed providing $\|r\|<1$.

Question Number	Scheme Marks
(a) (b) (c)	
(a)	$1^{\text {st }} \mathrm{M} 1$ for attempt to complete square. Allow $(x \pm 3)^{2} \pm k$, or $(y \pm 2)^{2} \pm k, k \neq 0$. $1^{\text {st }}$ A1 x-coordinate 3, $\quad 2^{\text {nd }}$ A1 y-coordinate -2 $2^{\text {nd }} \mathrm{M} 1$ for a full method leading to $r=\ldots$, with their 9 and their 4, $3^{\text {rd }}$ A1 5 or $\sqrt{25}$ The $1^{\text {st }} \mathrm{M}$ can be implied by $(\pm 3, \pm 2)$ but a full method must be seen for the $2^{\text {nd }} \mathrm{M}$. Where the 'diameter' in part (b) has clearly been used to answer part (a), no marks in (a), but in this case the M1 (not the A1) for part (b) can be given for work seen in (a). Alternative $1^{\text {st }}$ M1 for comparing with $x^{2}+y^{2}+2 g x+2 f y+c=0$ to write down centre $(-g,-f)$ directly. Condone sign errors for this M mark. $2^{\text {nd }}$ M1 for using $r=\sqrt{g^{2}+f^{2}-c}$. Condone sign errors for this M mark. $1^{\text {st }} \mathrm{M} 1$ for setting $x=0$ and getting a 3TQ in y by using eqn. of circle. $2^{\text {nd }} \mathrm{M} 1$ (dep.) for attempt to solve a $3 T Q$ leading to at least one solution for y. Alternative 1: (Requires the B mark as in the main scheme) $1^{\text {st }} \mathrm{M}$ for using $(3,4,5)$ triangle with vertices $(3,-2),(0,-2),(0, y)$ to get a linear or quadratic equation in $y\left(\right.$ e.g. $\left.3^{2}+(y+2)^{2}=25\right)$. $2^{\text {nd }} \mathrm{M}$ (dep.) as in main scheme, but may be scored by simply solving a linear equation. Alternative 2: (Not requiring realisation that R is on the circle) B1 for attempt at $m_{P R} \times m_{Q R}=-1$, (NOT $m_{P Q}$) or for attempt at Pythag. in triangle $P Q R$. $1^{\text {st }}$ M1 for setting $x=0$, i.e. $(0, y)$, and proceeding to get a 3TQ in y. Then main scheme. Alternative 2 by 'verification': B1 for attempt at $m_{P R} \times m_{Q R}=-1$, (NOT $m_{P Q}$) or for attempt at Pythag. in triangle $P Q R$. $1^{\text {st }}$ M1 for trying $(0,2)$. $2^{\text {nd }} \mathrm{M} 1$ (dep.) for performing all required calculations. A1 for fully correct working and conclusion.

Question Number	Scheme Marks
Q7 (i) (ii)	
(i)	$1^{\text {st }} \mathrm{B} 1$ for -45 seen $(\alpha$, where $\|\alpha\|<90)$ $2^{\text {nd }} \mathrm{B} 1$ for 135 seen, or $\mathrm{ft}(180+\alpha)$ if α is negative, or $(\alpha-180)$ if α is positive. If $\tan \theta=k$ is obtained from wrong working, $2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ is still available. $3^{\text {rd }}$ B1 for awrt $24 \quad(\beta$, where $\|\beta\|<90)$ $4^{\text {th }} \mathrm{B} 1$ for awrt 156 , or $\mathrm{ft}(180-\beta)$ if β is positive, or $-(180+\beta)$ if β is negative. If $\sin \theta=k$ is obtained from wrong working, $4^{\text {th }} \mathrm{B} 1 \mathrm{ft}$ is still available. $1^{\text {st }}$ M1 for use of $\tan x=\frac{\sin x}{\cos x}$. Condone $\frac{3 \sin x}{3 \cos x}$. $2^{\text {nd }} \mathrm{M} 1$ for correct work leading to 2 factors (may be implied). $1^{\text {st }} \mathrm{B} 1$ for $0,2^{\text {nd }} \mathrm{B} 1$ for 180 . $3^{\text {rd }}$ B1 for awrt $41 \quad(\gamma$, where $\|\gamma\|<180)$ $4^{\text {th }}$ B1 for awrt 319, or ft $(360-\gamma)$. If $\cos \theta=k$ is obtained from wrong working, $4^{\text {th }} \mathrm{B} 1 \mathrm{ft}$ is still available. N.B. Losing $\sin x=0$ usually gives a maximum of 3 marks M1M0B0B0B1B1 Alternative: (squaring both sides) $1^{\text {st }} \mathrm{M} 1$ for squaring both sides and using a 'quadratic' identity. e.g. $16 \sin ^{2} \theta=9\left(\sec ^{2} \theta-1\right)$ $2^{\text {nd }} \mathrm{M} 1$ for reaching a factorised form. e.g. $\left(16 \cos ^{2} \theta-9\right)\left(\cos ^{2} \theta-1\right)=0$ Then marks are equivalent to the main scheme. Extra solutions, if not rejected, are penalised as in the main scheme. For both parts of the question: Extra solutions outside required range: Ignore Extra solutions inside required range: For each pair of B marks, the $2^{\text {nd }} \mathrm{B}$ mark is lost if there are two correct values and one or more extra solution(s), e.g. $\tan \theta=-1 \Rightarrow \theta=45,-45,135$ is B 1 B 0 Answers in radians: Loses a maximum of 2 B marks in the whole question (to be deducted at the first and second occurrence).

Question Number	Scheme Marks
Q8 (a) (b)	
(a)	M1 for getting out of logs correctly. If done by change of base, $\log _{10} y=-0.903 \ldots$ is insufficient for the M1, but $y=10^{-0.003}$ scores M1. A1 for the exact answer, e.g. $\log _{10} y=-0.903 \Rightarrow y=0.12502$.. scores M1 (implied) A0. Correct answer with no working scores both marks. Allow both marks for implicit statements such as $\log _{2} 0.125=-3$. $1^{\text {st }}$ M1 for expressing 32 or 16 or 512 as a power of 2 , or for a change of base enabling evaluation of $\log _{2} 32, \log _{2} 16$ or $\log _{2} 512$ by calculator. (Can be implied by 5, 4 or 9 respectively). $1^{\text {st }}$ A1 for 9 (exact). $2^{\text {nd }}$ M1 for getting $\left(\log _{2} x\right)^{2}=$ constant. The constant can be a log or a sum of logs. If written as $\log _{2} x^{2}$ instead of $\left(\log _{2} x\right)^{2}$, allow the M mark only if subsequent work implies correct interpretation. $2^{\text {nd }}$ A1 for 8 (exact). Change of base methods leading to a non-exact answer score A0. $3^{\text {rd }}$ A1ft for an answer of $\frac{1}{\text { their } 8}$. An ft answer may be non-exact. Possible mistakes: $\log _{2}\left(2^{9}\right)=\log _{2}\left(x^{2}\right) \Rightarrow x^{2}=2^{9} \Rightarrow x=\ldots$ scores M1A1(implied by 9)M0A0A0 $\log _{2} 512=\log _{2} x \times \log _{2} x \Rightarrow x^{2}=512 \Rightarrow x=\ldots$ scores M0A0(9 never seen)M1A0A0 $\log _{2} 48=\left(\log _{2} x\right)^{2} \Rightarrow\left(\log _{2} x\right)^{2}=5.585 \Rightarrow x=5.145, x=0.194$ scores M0A0M1A0A1ft No working (or 'trial and improvement'): $x=8$ scores M0 A0 M1 A1 A0

Question Number	Scheme Marks
Q9 (a)	(Arc length =) $r \theta=r \times 1=r$. Can be awarded by implication from later work, e.g. $3 r h$ or $(2 r h+r h)$ in the S formula. (Requires use of $\theta=1$). (Sector area $=$) $\frac{1}{2} r^{2} \theta=\frac{1}{2} r^{2} \times 1=\frac{r^{2}}{2}$. Can be awarded by implication from later work, e.g. the correct volume formula. (Requires use of $\theta=1$). Surface area $=2$ sectors +2 rectangles + curved face $\left(=r^{2}+3 r h\right) \quad \text { (See notes below for what is allowed here) }$ Volume $=300=\frac{1}{2} r^{2} h$ Sub for $h: S=r^{2}+3 \times \frac{600}{r}=r^{2}+\frac{1800}{r}$ $\frac{\mathrm{d} S}{\mathrm{~d} r}=2 r-\frac{1800}{r^{2}}$ or $2 r-1800 r^{-2} \quad$ or $2 r+-1800 r^{-2}$ $\frac{\mathrm{d} S}{\mathrm{~d} r}=0 \Rightarrow r^{3}=\ldots, \quad r=\sqrt[3]{900}$, or AWRT $9.7 \quad($ NOT -9.7 or $\pm 9.7)$ $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=\ldots . \quad$ and consider sign, $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=2+\frac{3600}{r^{3}}>0$ so point is a minimum $S_{\min }=(9.65 \ldots)^{2}+\frac{1800}{9.65 \ldots}$ (Using their value of r, however found, in the given S formula)
(a) (b) (c)	M1 for attempting a formula (with terms added) for surface area. May be incomplete or wrong and may have extra term(s), but must have an r^{2} (or $r^{2} \theta$) term and an $r h$ (or $r h \theta$) term. In parts (b), (c) and (d), ignore labelling of parts $1^{\text {st }} \mathrm{M} 1$ for attempt at differentiation (one term is sufficient) $r^{n} \rightarrow k r^{n-1}$ $2^{\text {nd }} \mathrm{M} 1$ for setting their derivative (a 'changed function') $=0$ and solving as far as $r^{3}=\ldots$ (depending upon their 'changed function', this could be $r=\ldots$ or $r^{2}=\ldots$, etc., but the algebra must deal with a negative power of r and should be sound apart from possible sign errors, so that $r^{n}=\ldots$ is consistent with their derivative). M1 for attempting second derivative (one term is sufficient) $r^{n} \rightarrow k r^{n-1}$, and considering its sign. Substitution of a value of r is not required. (Equating it to zero is M0). A1ft for a correct second derivative (or correct ft from their first derivative) and a valid reason (e.g. >0), and conclusion. The actual value of the second derivative, if found, can be ignored. To score this mark as ft , their second derivative must indicate a minimum. Alternative: M1: Find value of $\frac{\mathrm{d} S}{\mathrm{~d} r}$ on each side of their value of r and consider sign. A1ft: Indicate sign change of negative to positive for $\frac{\mathrm{d} S}{\mathrm{~d} r}$, and conclude minimum. Alternative: M1: Find value of S on each side of their value of r and compare with their 279.65. A1ft: Indicate that both values are more than 279.65 , and conclude minimum.

