

# Mark Scheme (Results)

June 2011

GCE Core Mathematics C2 (6664) Paper 1



Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: <a href="http://www.edexcel.com/Aboutus/contact-us/">http://www.edexcel.com/Aboutus/contact-us/</a>

June 2011 Publications Code UA027657 All the material in this publication is copyright © Edexcel Ltd 2011



#### EDEXCEL GCE MATHEMATICS

#### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
  - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
  - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
  - B marks are unconditional accuracy marks (independent of M marks)
  - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- L The second mark is dependent on gaining the first mark



#### June 2011 Core Mathematics C2 6664 Mark Scheme

|                    | Mark Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                             |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Question<br>Number | Sche                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | me                                                                                                                                                                                                                                                                                                     | Marks                       |
| <b>1.</b> (a)      | $f(x) = 2x^{3} - 7x^{2} - 5x + 4$<br>Remainder = f(1) = 2 - 7 - 5 + 4 = -6<br>= -6                                                                                                                                                                                                                                                                                                                                                                                              | Attempts $f(1)$ or $f(-1)$ .<br>- 6                                                                                                                                                                                                                                                                    | M1<br>A1 [ <b>2</b> ]       |
| (b)                | $f(-1) = 2(-1)^3 - 7(-1)^2 - 5(-1) + 4$<br>and so $(x + 1)$ is a factor.                                                                                                                                                                                                                                                                                                                                                                                                        | Attempts $f(-1)$ .<br>f(-1) = 0 with no sign or substitution<br>errors <b>and for conclusion</b> .                                                                                                                                                                                                     | M1<br>A1 [ <b>2</b> ]       |
| (c)                | $f(x) = \{(x+1)\}(2x^2 - 9x + 4) \\ = (x+1)(2x-1)(x-4)$ (Note: Ignore the ePEN notation of (b) (should be                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                        | M1 A1<br>dM1 A1<br>[4]<br>8 |
| (a)                | M1 for <i>attempting</i> either $f(1)$ or $f(-1)$ . Can be implied. Only one slip permitted.<br>M1 can also be given for an attempt (at least two "subtracting" processes) at long division to give a remainder which is independent of x. A1 can be given also for $-6$ seen at the bottom of long division working. Award A0 for a candidate who finds $-6$ but then states that the remainder is 6.<br>Award M1A1 for $-6$ without any working.                              |                                                                                                                                                                                                                                                                                                        |                             |
| (b)                | M1: attempting only $f(-1)$ . A1: must correctly show $f(-1) = 0$ and give a conclusion <i>in part (b) only</i> .<br><b>Note</b> : Stating "hence factor" or "it is a factor" or a "tick" or "QED" is fine for the conclusion.<br><b>Note</b> also that a conclusion can be implied from a <u>preamble</u> , eg: "If $f(-1) = 0$ , $(x + 1)$ is a factor"                                                                                                                       |                                                                                                                                                                                                                                                                                                        |                             |
| (c)                | Note: Long division scores no marks in part (It 1 <sup>st</sup> M1: Attempts long division or other method, t<br>Working need not be seen as this could be done "<br><i>only</i> . Award 1 <sup>st</sup> M0 if the quadratic factor is clear<br>candidates use their $(2x^2 - 5x - 10)$ in part (c) fou<br>1 <sup>st</sup> A1: For seeing $(2x^2 - 9x + 4)$ .<br>2 <sup>nd</sup> dM1: Factorises a 3 term quadratic. (see rule<br>previous method mark being awarded. This mark | to obtain $(2x^2 \pm ax \pm b)$ , $a \neq 0$ , even with a reme<br>by inspection." $(2x^2 \pm ax \pm b)$ must be seen <i>in</i> p<br>rly found from dividing $f(x)$ by $(x - 1)$ . Eg. So<br>and from applying a long division method in part<br>of for factorising a quadratic). This is dependent of | part (c)<br>me<br>(a).      |
|                    | quadratic formula correctly.<br>$2^{nd}$ A1: is cao and needs all three factors on one l<br>quadratic equation.)<br>Note: Some candidates will go from $\{(x + 1)\}(2x)$                                                                                                                                                                                                                                                                                                        | line. Ignore following work (such as a solution t                                                                                                                                                                                                                                                      | o a                         |
|                    | factors. Award these responses M1A1M1A0.<br><u>Alternative:</u> 1 <sup>st</sup> M1: For finding either $f(4) = 0$<br>1 <sup>st</sup> A1: A second correct factor of usually $(x - 4)$<br>factors found would imply the 1 <sup>st</sup> M1 mark.<br>2 <sup>nd</sup> dM1: For using two known factors to find the<br>2 <sup>nd</sup> A1 for correct answer of $(x + 1)(2x - 1)(x - 4)$                                                                                            | 0 or $f(\frac{1}{2}) = 0$ .<br>) or $(2x - 1)$ found. Note that any one of the other third factor, usually $(2x \pm 1)$ .                                                                                                                                                                              |                             |
|                    | Alternative: (for the first two marks) $1^{st}$ M1: Expands $(x + 1)(2x^2 + ax + b)$ {giving 2                                                                                                                                                                                                                                                                                                                                                                                  | $2x^{3} + (a+2)x^{2} + (b+a)x + b$ } then compare<br>1: $a = -9, b = 4$                                                                                                                                                                                                                                | A0.                         |
|                    | <b>Answer only, with one sign error:</b> eg. $(x + 1)(2)$                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                      |                             |
|                    | M1A1M1A0. (c) Award M1A1M1A1 for List                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                        |                             |

GCE Core Mathematics C2 (6664) June 2011

| Question<br>Number | Scheme                                                                                                                                                                  |                                                                                                                 | Marks                                             |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 2. (a)             | $\left\{ (3+bx)^5 \right\} = (3)^5 + \frac{{}^5C_1(3)^4(b\underline{x})}{405bx} + \frac{{}^5C_2(3)^3(b\underline{x})^2}{2} + \dots$ $= 243 + 405bx + 270b^2x^2 + \dots$ | 243 as a constant term seen.<br>405bx<br>$({}^{5}C_{1} \times \times x)$ or $({}^{5}C_{2} \times \times x^{2})$ | B1<br>B1<br><u>M1</u>                             |
|                    | -243 + 4030x + 2700x +                                                                                                                                                  | $270b^2x^2$ or $270(bx)^2$                                                                                      | A1 [4]                                            |
| (b)                | $\left\{2(\text{coeff } x) = \text{coeff } x^2\right\} \implies 2(405b) = 270b^2$                                                                                       | Establishes an equation from<br>their coefficients. Condone 2 on<br>the wrong side of the equation.             | M1                                                |
|                    | So, $\left\{b = \frac{810}{270} \Rightarrow\right\} b = 3$                                                                                                              | b = 3 (Ignore $b = 0$ , if seen.)                                                                               | A1                                                |
|                    |                                                                                                                                                                         |                                                                                                                 | [2]<br>6                                          |
| (a)<br>(b)         |                                                                                                                                                                         |                                                                                                                 | <i>b</i> ) may be<br>s.<br>s.<br>y get<br>ve been |

| edexcel |  |
|---------|--|
|         |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Marks         |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 3.                 | (a) $5^x = 10$ and (b) $\log_3(x-2) = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| (a)                | $x = \frac{\log 10}{\log 5}  \text{or}  x = \log_5 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1            |
|                    | $x \{= 1.430676558\} = 1.43 (3 \text{ sf})$ 1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1 cao<br>[2] |
| (b)                | $(x-2) = 3^{-1}$ $(x-2) = 3^{-1}$ or $\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1 oe         |
|                    | $x \left\{=\frac{1}{3}+2\right\}=2\frac{1}{3}$ $2\frac{1}{3}$ or $\frac{7}{3}$ or 2.3 or awrt 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [2]<br>4      |
| (a)                | M1: for $x = \frac{\log 10}{\log 5}$ or $x = \log_5 10$ . Also allow M1 for $x = \frac{1}{\log 5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| (b)                | M1: for $x = \frac{1}{\log 5}$ or $x = \log_5 10$ . Also allow M1 for $x = \frac{1}{\log 5}$<br>1.43 with no working (or any working) scores M1A1 (even if left as $5^{1.43}$ ).<br>Other answers which round to 1.4 with no working score M1A0.<br><b>Trial &amp; Improvement Method:</b> M1: For a method of trial and improvement by trialing<br>f (value between 1.4 and 1.43) = Value below 10 and<br>f (value between 1.431 and 1.5) = Value over 10.<br>A1 for 1.43 cao.<br><b>Note:</b> $x = \log_{10} 5$ by itself is M0; but $x = \log_{10} 5$ followed by $x = 1.430676558$ is M1.<br>M1: Is for correctly eliminating log out of the equation.<br><b>Eg 1:</b> $\log_3(x - 2) = \log_3(\frac{1}{3}) \Rightarrow x - 2 = \frac{1}{3}$ only gets M1 when the logs are correctly removed.<br><b>Eg 2:</b> $\log_3(x - 2) = -\log_3(3) \Rightarrow \log_3(x - 2) + \log_3(3) = 0 \Rightarrow \log_3(3(x - 2)) = 0$<br>$\Rightarrow 3(x - 2) = 3^0$ only gets M1 when the logs are correctly removed,<br>but $3(x - 2) = 0$ would score M0.<br><b>Note:</b> $\log_3(x - 2) = -1 \Rightarrow \log_3(\frac{x}{2}) = -1 \Rightarrow \frac{x}{2} = 3^{-1}$ would score M0 for incorrect use of logs. |               |
|                    | $\frac{\text{Alternative: changing base}}{\log_{10}(x-2)} = -1 \implies \log_{10}(x-2) = -\log_{10}3 \implies \log_{10}(x-2) + \log_{10}3 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
|                    | $\Rightarrow \log_{10} 3(x-2) = 0 \Rightarrow 3(x-2) = 10^{\circ}$ . At this point M1 is scored.<br>A correct answer in (b) without any working scores M1A1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks              | i    |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|--|
| 4.                 | $x^2 + y^2 + 4x - 2y - 11 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |      |  |
| (a)                | $\left\{ \underline{(x+2)^2 - 4} + \underline{(y-1)^2 - 1} - 11 = 0 \right\} $ (±2, ±1), see notes.                                                                                                                                                                                                                                                                                                                                                              | M1                 |      |  |
|                    | Centre is $(-2, 1)$ . $(-2, 1)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                | A1 cao             | [2]  |  |
| (b)                | $(x+2)^{2} + (y-1)^{2} = 11 + 1 + 4 \qquad \qquad r = \sqrt{11 \pm "1" \pm "4"}$                                                                                                                                                                                                                                                                                                                                                                                 | M1                 |      |  |
|                    | So $r = \sqrt{11 + 1 + 4} \implies r = 4$ 4 or $\sqrt{16}$ (Award A0 for $\pm 4$ ).                                                                                                                                                                                                                                                                                                                                                                              | A1<br>[ <b>2</b> ] |      |  |
| (c)                | When $x = 0$ , $y^2 - 2y - 11 = 0$<br>$y^2 - 2y - 11 = 0$ or $(y - 1)^2 = 12$ , etc                                                                                                                                                                                                                                                                                                                                                                              | M1<br>A1 aef       |      |  |
|                    | $y = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-11)}}{2(1)}  \left\{ = \frac{2 \pm \sqrt{48}}{2} \right\}$ $y = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-11)}}{2(1)}  \left\{ = \frac{2 \pm \sqrt{48}}{2} \right\}$ Attempt to use formula or a method of completing the square in order to find $y = \dots$                                                                                                                                                                       | M1                 |      |  |
|                    | So, $y = 1 \pm 2\sqrt{3}$ $1 \pm 2\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                      | A1 cao cso<br>[4]  | 8    |  |
| (a)                | Note: Please mark parts (a) and (b) together. Answers only in (a) and/or (b) get full marks.<br>Note in part (a) the marks are now M1A1 and not B1B1 as on ePEN.<br>M1: for $(\pm 2, \pm 1)$ . Otherwise, M1 for an attempt to complete the square eg. $(x \pm 2)^2 \pm \alpha$ , $\alpha \neq 0$ or $(\underline{y \pm 1})^2 \pm \beta$ , $\beta \neq 0$ . M1A1: Correct answer of (-2, 1) stated from any working gets M1A1.                                   |                    |      |  |
| (b)                | M1: to find the radius using 11, "1" and "4", ie. $r = \sqrt{11 \pm "1" \pm "4"}$ . By applying this meth                                                                                                                                                                                                                                                                                                                                                        |                    | es   |  |
|                    | will usually achieve $\sqrt{16}$ , $\sqrt{6}$ , $\sqrt{8}$ or $\sqrt{14}$ and not 16, 6, 8 or 14.                                                                                                                                                                                                                                                                                                                                                                |                    | 05   |  |
|                    | Will usually achieve $\sqrt{10}$ , $\sqrt{6}$ , $\sqrt{8}$ or $\sqrt{14}$ and not 16, 6, 8 or 14.<br>Note: $(x+2)^2 + (y-1)^2 = -11 - 5 = -16 \implies r = \sqrt{16} = 4$ should be awarded M0A0.                                                                                                                                                                                                                                                                |                    |      |  |
|                    | <b><u>Alternative:</u></b> M1 in part (a): For comparing with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write down                                                                                                                                                                                                                                                                                                                                                      | i centre           |      |  |
|                    | $(-g, -f)$ directly. Condone sign errors for this M mark. M1 in part (b): For using $r = \sqrt{g^2}$ Condone sign errors for this method mark.                                                                                                                                                                                                                                                                                                                   |                    |      |  |
| (c)                | $(x + 2)^2 + (y - 1)^2 = 16 \implies r = 8$ scores M0A0, but $r = \sqrt{16} = 8$ scores M1A1 isw.<br>1 <sup>st</sup> M1: Putting $x = 0$ in either $x^2 + y^2 + 4x - 2y - 11 = 0$ or their circle equation usually giv<br>part (b). 1 <sup>st</sup> A1 for a correct equation in y <b>in any form</b> which can be implied by later working<br>2 <sup>nd</sup> M1: See rules for using the formula. Or completing the square on a 3TQ to give $y = a \pm \infty$ | ıg.                | ) or |  |
|                    | $\sqrt{b}$ is a surd, $b \neq$ their 11 and $b > 0$ . This mark should not be given for an attempt to factorise                                                                                                                                                                                                                                                                                                                                                  |                    |      |  |
|                    | 2 <sup>nd</sup> A1: Need exact pair in simplified surd form of $\{y =\} 1 \pm 2\sqrt{3}$ . This mark is also cso.                                                                                                                                                                                                                                                                                                                                                |                    |      |  |
|                    | Do not need to see $(0, 1 + 2\sqrt{3})$ and $(0, 1 - 2\sqrt{3})$ . Allow $2^{nd}$ A1 for bod $(1 + 2\sqrt{3}, 0)$ and $(1 - Any incorrect working in (c) gets penalised the final accuracy mark. So, beware: incorrect (x - 2)^2 + (y - 1)^2 = 16 leading to y^2 - 2y - 11 = 0 and then y = 1 \pm 2\sqrt{3} scores M1A1M1A$                                                                                                                                      |                    |      |  |
|                    | <b>Special Case for setting </b> $y = 0$ : Award SC: M0A0M1A0 for an attempt at applying the formula $x = \frac{-4 \pm \sqrt{(-4)^2 - 4(1)(-11)}}{2(1)} \left\{ = \frac{-4 \pm \sqrt{60}}{2} = -2 \pm \sqrt{15} \right\}$ Award SC: M0A0M1A0 for complex square to their equation in x which be $x^2 + 4x - 11 = 0$ to give $a \pm \sqrt{b}$ is a surd, $b \neq$ their 11 and $b > \sqrt{b}$ is a surd, $b \neq$ their 11 and $b > \sqrt{b}$ .                   | la<br>pleting the  | у    |  |
|                    | <b>Special Case:</b> For a candidate not using $\pm$ but achieving one of the correct answers then awar SC: M1A1 M1A0 for one of either $y = 1 + 2\sqrt{3}$ or $y = 1 - 2\sqrt{3}$ or $y = 1 + \sqrt{12}$ or $y = 1 - \sqrt{3}$                                                                                                                                                                                                                                  | d                  |      |  |



| Question      | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks                    |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Number        | $\frac{1}{2}r^2\theta = \frac{1}{2}(6)^2\left(\frac{\pi}{3}\right) = 6\pi \text{ or } 18.85 \text{ or awrt } 18.8 \text{ (cm)}^2$ Using $\frac{1}{2}r^2\theta$ (See notes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1                       |
| <b>5.</b> (a) | $\frac{-7}{2} = \frac{-2}{2} = \frac{-1}{2} = 0 \pi \text{ or } 18.85 \text{ or } a \text{ wrt } 18.8 \text{ (cm)}$<br>$6\pi \text{ or } 18.85 \text{ or } a \text{ wrt } 18.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1                       |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [2]                      |
| (b)           | $\sin\left(\frac{\pi}{6}\right) = \frac{r}{6-r} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1                       |
|               | $\frac{1}{2} = \frac{r}{6-r}$ Replaces sin by numeric value $6 - r = 2r \Rightarrow r = 2$ $r = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dM1                      |
|               | $6 - r = 2r \Rightarrow r = 2$ $r = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1 cso<br>[3]            |
| (c)           | Area = $6\pi - \pi (2)^2 = 2\pi$ or awrt 6.3 (cm) <sup>2</sup><br>their area of sector $-\pi r^2$<br>$2\pi$ or awrt 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1<br>A1 cao<br>[2]<br>7 |
| (a)<br>(b)    | M1: Needs $\theta$ in radians for this formula.<br>Candidate could convert to degrees and use the degrees formula.<br>A1: Does not need units. Answer should be either $6\pi$ or 18.85 or awrt 18.8<br>Correct answer with no working is M1A1.<br>This M1A1 can only be awarded in part (a).<br>M1: Also allow $\cos\left(\frac{\pi}{3}\right)$ or $\cos 60^\circ = \frac{r}{6-r}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| (c)           | M1: Also allow $\cos\left(\frac{\pi}{3}\right)$ or $\cos 60^{\circ} = \frac{r}{6-r}$ .<br>1 <sup>st</sup> M1: Needs correct trigonometry method. Candidates could state $\sin\left(\frac{\pi}{6}\right) = \frac{r}{x}$ and $x + r =$<br>equivalent in their working to gain this method mark.<br>dM1: Replaces sin by numerical value. $0.009 = \frac{r}{6-r}$ from working "incorrectly" in degree<br>here for dM1.<br>A1: For $r = 2$ from correct solution only.<br>Alternative: 1 <sup>st</sup> M1 for $\frac{r}{cc} = \sin 30$ or $\frac{r}{cc} = \cos 60$ . 2 <sup>nd</sup> M1 for $OC = 2r$ and then A1 for $r = 3$<br>Note seeing $OC = 2r$ is M1M1.<br>Special Case: If a candidate states an answer of $r = 2$ (must be in part (b)) as a guess or from a<br>incorrect method then award SC: M0M0B1. Such a candidate could then go on to score M1A3<br>(c).<br>M1: For "their area of sector – their area of circle", where $r > 0$ is ft from their answer to part<br>Allow the method mark if "their area of sector" < "their area of circle". The candidate must she<br>somewhere in their working that they are subtracting the correct way round, even if their answer<br>negative.<br>Some candidates in part (c) will either use their value of $r$ from part (b) or even introduce a value<br>in part (c). You can apply the scheme to award either M0A0 or M1A0 or M1A1 to these candii<br>Note: Candidates can get M1 by writing "their part (a) answer $-\pi r^{2}$ ", where the radius of the<br>not substituted.<br>A1: cao – accept exact answer or awrt 6.3<br>Correct answer only with no working in (c) gets M1A1 |                          |



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marks         |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| <b>6.</b> (a)      | $\{ ar = 192 \text{ and } ar^2 = 144 \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |  |
| (u)                | $r = \frac{144}{192}$ Attempt to eliminate <i>a</i> . (See notes.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1            |  |
|                    | $\frac{192}{r = \frac{3}{4} \text{ or } 0.75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1            |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [2]           |  |
| (b)                | a(0.75) = 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1            |  |
|                    | $a\left\{=\frac{192}{0.75}\right\}=256$ 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1 [2]        |  |
| (c)                | $S_{\infty} = \frac{256}{1-0.75}$ Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r  < 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1            |  |
|                    | So, $\{S_{\infty}=\}1024$ 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1 cao<br>[2] |  |
| (d)                | $\frac{256(1 - (0.75)^n)}{1 - 0.75} > 1000$ Applies S <sub>n</sub> with their a and r and "uses" 1000<br>at any point in their working. (Allow with = or <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1            |  |
|                    | $\frac{1}{1-0.75} > 1000$ at any point in their working. (Allow with = or < ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1            |  |
|                    | $(0.75)^n < 1 - \frac{1000(0.25)}{256} \left\{ = \frac{6}{256} \right\}$ Attempt to isolate $+(r)^n$ from $S_n$ formula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1            |  |
|                    | (Allow with = of >).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |  |
|                    | $n\log(0.75) < \log\left(\frac{6}{256}\right)$ Uses the power law of logarithms correctly.<br>(Allow with = or > ). (See notes.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1            |  |
|                    | $n > \frac{\log(\frac{6}{256})}{\log(0.75)} = 13.0471042 \Rightarrow n = 14$ See notes <b>and</b> $n = 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1 cso        |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [4]<br>10     |  |
| (a)                | M1: for eliminating <i>a</i> by eg. $192r = 144$ or by either dividing $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ or divident $ar^2 = 144$ by $ar = 192$ by $ar $                                  | viding        |  |
|                    | $ar = 192$ by $ar^2 = 144$ , to achieve an equation in $r$ or $\frac{1}{r}$ Note that $r^2 - r = \frac{144}{192}$ is M0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |  |
|                    | Note also that any of $r = \frac{144}{192}$ or $r = \frac{192}{144} \left\{ = \frac{4}{3} \right\}$ or $\frac{1}{r} = \frac{192}{144}$ or $\frac{1}{r} = \frac{144}{192}$ are fine for the average of the second | vard of       |  |
|                    | M1. Note: A candidate just writing $r = \frac{144}{192}$ with no reference to <i>a</i> can also get the method is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mark.         |  |
|                    | <b>Note:</b> $ar^2 = 192$ and $ar^3 = 144$ leading to $r = \frac{3}{4}$ scores M1A1. This is because r is the rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |  |
| (b)                | between any two consecutive terms. These candidates, however, will usually be penalised in part (b).<br>M1 for incerting their winter either of the correct equations of either $ar = 102$ or $(a_{-})^{192}$ or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |  |
|                    | M1 for inserting their r into either of the correct equations of either $ar = 192$ or $\{a =\} \frac{192}{r}$ or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |  |
|                    | $ar^2 = 144$ or $\{a =\} \frac{144}{r^2}$ . No slips allowed here for M1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |  |
|                    | M1: can also be awarded for writing down $144 = a \left(\frac{192}{a}\right)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |  |
|                    | A1 for $a = 256$ only. Note 256 from any working scores M1A1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |  |
|                    | Note: Some candidates incorrectly confuse notation to give $r = \frac{4}{3}$ or 1.33 in part (a) (g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | getting       |  |
|                    | M1A0). In part (b), they recover to write $a = 192 \times \frac{4}{3}$ for M1 and then 256 for A1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |  |



| Question |                                                                                                                                                                                                       |                |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Number   | Scheme                                                                                                                                                                                                | Marks          |  |
| (c)      | M1: for applying $\frac{a}{1-r}$ correctly (no slips allowed!) using both their <i>a</i> and their <i>r</i> , where $ r  < 1$ .                                                                       |                |  |
|          | A1: for 1024, cao.                                                                                                                                                                                    |                |  |
| (d)      | In parts (a) or (b) or (c), the correct answer with no working scores full marks.                                                                                                                     |                |  |
| (u)      | 1 <sup>st</sup> M1: For applying $S_n$ with their <i>a</i> and either "the letter <i>r</i> " or their <i>r</i> and "uses" 1000.                                                                       |                |  |
|          | 2 <sup>nd</sup> M1: For isolating $+(r)^n$ and not $(ar)^n$ , (eg. $(192)^n$ ) as the subject of an equation or i                                                                                     | nequanty.      |  |
|          | $+(r)^n$ must be derived from the S <sub>n</sub> formula.                                                                                                                                             |                |  |
|          | 3 <sup>rd</sup> M1: For applying the power law to $\lambda^k = \mu$ to give $k \log \lambda = \log \mu$ oe. where $\lambda, \mu > \lambda$                                                            | 0.             |  |
|          | or 3 <sup>rd</sup> M1: For solving $\lambda^k = \mu$ to give $k = \log_{\lambda} \mu$ , where $\lambda, \mu > 0$ .                                                                                    |                |  |
|          | A1: cso If a candidate uses inequalities, a fully correct method with inequalities is require<br>So, an <u>incorrect</u> inequality statement at any stage in a candidate's working for this part los |                |  |
|          | mark.<br><b>Note:</b> Some candidates do not realise that the direction of the inequality is reversed in the                                                                                          | final line     |  |
|          | of their solution.                                                                                                                                                                                    |                |  |
|          | Or A1: cso Note a candidate can achieve full marks here if they do not use inequalities.                                                                                                              |                |  |
|          | So, if a candidate uses equations rather than inequalities in their working then they need to final line of their working that $n = 13.04$ (truncated) or $n = awrt 13.05 \Rightarrow n = 14$ for A1. | o state in the |  |
|          | n = 14 from no working gets SC: MOMOM1A1.                                                                                                                                                             |                |  |
|          | A method of $T_n > 1000 \Rightarrow 256(0.75)^{n-1} > 1000$ can score M0M0M1A0 for a correct appl                                                                                                     | ication of     |  |
|          | the power law of logarithms.                                                                                                                                                                          |                |  |
|          | Trial & Improvement Method:                                                                                                                                                                           |                |  |
|          | For $a = 256$ and $r = 0.75$ , apply the following scheme:                                                                                                                                            |                |  |
|          | $S_{13} = \frac{256(1 - (0.75)^{13})}{1 - 0.75} = 999.6725616$ Attempt to find either $S_{13}$ or $S_{14}$ .                                                                                          | M1             |  |
|          | $1  0.75 \qquad \qquad \text{Efficiency}  0.75  \text{of function}$                                                                                                                                   |                |  |
|          | 999 OR (2) $S_{14} = awrt 1005.8$ or                                                                                                                                                                  | M1             |  |
|          | truncated 1005.<br>$256(1 - (0.75)^{14})$                                                                                                                                                             | M1             |  |
|          | $S_{14} = \frac{1}{1-0.75} = 1005.754421$                                                                                                                                                             | M1             |  |
|          | BOTH (1) $S_{13}$ = awrt 999.7 or truncated                                                                                                                                                           |                |  |
|          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                 | A1             |  |
|          | So, $n = 14$ . truncated 1005 AND $n = 14$ .                                                                                                                                                          |                |  |



| Question | Scheme                                                                                                                                                                                                                       | Marks     |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Number   |                                                                                                                                                                                                                              |           |  |
|          | <b><u>Note:</u></b> A similar scheme would apply for T&I for candidates using their <i>a</i> and their <i>r</i> . So, 1 <sup>st</sup> M1: For attempting to find one of the correct $S_n$ 's either side (but next to) 1000. |           |  |
|          | $2^{nd}$ M1: For one of these $S_n$ 's correct for their <i>a</i> and their <i>r</i> . (You may need to get your ca                                                                                                          | lculators |  |
|          | out!)                                                                                                                                                                                                                        |           |  |
|          | $3^{rd}$ M1: For attempting to find both of the correct $S_n$ 's either side (but next to) 1000.                                                                                                                             |           |  |
|          | <ul> <li>A1: Cannot be gained for wrong <i>a</i> and/or <i>r</i>.</li> <li>Trial &amp; Improvement Cumulative Approach:<br/>A similar scheme to T&amp;I will be applied here:</li> </ul>                                     |           |  |
|          |                                                                                                                                                                                                                              |           |  |
|          | 1 <sup>st</sup> M1: For getting as far as the cumulative sum of 13 terms. $2^{nd}$ M1: (1)S <sub>13</sub> = awrt 999.7                                                                                                       | or        |  |
|          | truncated 999. 3 <sup>rd</sup> M1: For getting as far as the cumulative sum to 14 terms. Also at this s                                                                                                                      |           |  |
|          | $S_{13} < 1000 \text{ and } S_{14} > 1000$ . A1: BOTH (1) $S_{13} = awrt 999.7$ or truncated 999 AND (2)                                                                                                                     |           |  |
|          | $S_{14} = awrt 1005.8 \text{ or truncated } 1005 \text{ AND } n = 14.$                                                                                                                                                       |           |  |
|          | <b><u>Trial &amp; Improvement Method:</u></b> for $(0.75)^n < \frac{6}{256} = 0.0234375$                                                                                                                                     |           |  |
|          | $3^{rd}$ M1: For evidence of examining both $n = 13$ and $n = 14$ .                                                                                                                                                          |           |  |
|          | Eg: $(0.75)^{13} \{= 0.023757\}$ and $(0.75)^{14} \{= 0.0178179\}$                                                                                                                                                           |           |  |
|          | A1: $n = 14$                                                                                                                                                                                                                 |           |  |
|          | <u>Any misreads</u> , $S_n > 10000$ etc, please escalate up to your Team Leader.                                                                                                                                             |           |  |
| 7.       | (a) $3\sin(x+45^\circ) = 2$ ; $0 \le x < 360^\circ$ (b) $2\sin^2 x + 2 = 7\cos x$ ; $0 \le x < 2\pi$                                                                                                                         |           |  |
| (a)      | $\sin(x+45^\circ) = \frac{2}{3}$ , so $(x+45^\circ) = 41.8103$ $(\alpha = 41.8103)$ $\sin^{-1}\left(\frac{2}{3}\right)$ or awrt 41.8                                                                                         | M1        |  |
|          | or awrt 0.73°                                                                                                                                                                                                                |           |  |
|          | So, $x + 45^{\circ} = \{138.1897, 401.8103\}$<br>$x + 45^{\circ} = \text{either "180 - their } \alpha \text{"or}$                                                                                                            | M1        |  |
|          | $360 + \text{their } \alpha^{-1}$ ( $\alpha$ could be in radians).                                                                                                                                                           |           |  |
|          | and $x = \{93.1897, 356.8103\}$ Either awrt $93.2^{\circ}$ or awrt $356.8^{\circ}$                                                                                                                                           | A1        |  |
|          | Both awrt 93.2° and awrt 356.8°                                                                                                                                                                                              | A1        |  |
|          |                                                                                                                                                                                                                              | [4]       |  |
| (b)      | $2(1 - \cos^2 x) + 2 = 7\cos x$ Applies $\sin^2 x = 1 - \cos^2 x$                                                                                                                                                            | M1        |  |
|          | $2\cos^{2} x + 7\cos x - 4 = 0$ Correct 3 term, $2\cos^{2} x + 7\cos x - 4 \{=0\}$                                                                                                                                           | A1 oe     |  |
|          | $(2\cos x - 1)(\cos x + 4) \{= 0\}$ , $\cos x =$ Valid attempt at solving and $\cos x =$                                                                                                                                     | M1        |  |
|          | $\cos x = \frac{1}{2}$ , $\{\cos x = -4\}$ $\cos x = \frac{1}{2}$ (See notes.)                                                                                                                                               | A1 cso    |  |
|          | $\left(\beta = \frac{\pi}{3}\right)$                                                                                                                                                                                         |           |  |
|          | $x = \frac{\pi}{3}$ or 1.04719 <sup>c</sup> Either $\frac{\pi}{3}$ or awrt 1.05 <sup>c</sup>                                                                                                                                 | B1        |  |
|          | $x = \frac{5\pi}{3}$ or 5.23598° Either $\frac{5\pi}{3}$ or awrt 5.24° or $2\pi$ – their $\beta$ (See notes.)                                                                                                                | B1 ft     |  |
|          |                                                                                                                                                                                                                              | [6]<br>10 |  |

| edexcel |  |
|---------|--|
|         |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                         | Marks |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (a)                | 1 <sup>st</sup> M1: can also be implied for $x = awrt - 3.2$                                                                                                                                                                   |       |
|                    | $2^{nd}$ M1: for $x + 45^{\circ}$ = either "180 – their $\alpha$ " or "360° + their $\alpha$ ". This can be implied by later                                                                                                   |       |
|                    | working. The candidate's $\alpha$ could also be in radians.                                                                                                                                                                    |       |
|                    | Note that this mark is not for $x =$ either "180 – their $\alpha$ " or "360° + their $\alpha$ ".                                                                                                                               |       |
|                    | Note: Imply the first two method marks or award M1M1A1 for either awrt 93.2° or awrt 356.8°.                                                                                                                                   |       |
|                    | <b>Note:</b> Candidates who apply the following incorrect working of $3\sin(x + 45^\circ) = 2$                                                                                                                                 |       |
|                    | $\Rightarrow 3(\sin x + \sin 45) = 2$ , etc will usually score M0M0A0A0.                                                                                                                                                       |       |
|                    | If there are any EXTRA solutions inside the range $0 \le x < 360$ and the candidate would otherwise                                                                                                                            |       |
|                    | score FULL MARKS then withhold the final aA2 mark (the final mark in this part of the question).<br>Also ignore EXTRA solutions outside the range $0 \le x < 360$ .                                                            |       |
|                    | Working in Radians: Note the answers in radians are $x = awrt 1.6$ , awrt 6.2                                                                                                                                                  |       |
|                    | If a candidate works in radians then mark part (a) as above awarding the A marks in the same way.<br>If the candidate would then score FULL MARKS then withhold the final aA2 mark (the final mark this part of the question.) |       |
|                    | <b>No working:</b> Award M1M1A1A0 for one of awrt 93.2° or awrt 356.8° seen without any working.                                                                                                                               |       |
|                    | Award M1M1A1A1 for both awrt 93.2° and awrt 356.8° seen without any working.                                                                                                                                                   |       |
|                    | Allow benefit of the doubt (FULL MARKS) for final answer of                                                                                                                                                                    |       |
|                    | $\sin x \{ \text{and not } x \} = \{ \text{awrt } 93.2, \text{ awrt } 356.8 \}$                                                                                                                                                |       |
|                    |                                                                                                                                                                                                                                |       |



| Question<br>Number | Scheme                                                                                                                                                                                                                                                      | Marks    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (b)                | 1 <sup>st</sup> M1: for a correct method to use $\sin^2 x = 1 - \cos^2 x$ on the given equation.                                                                                                                                                            |          |
|                    | Give bod if the candidate omits the bracket when substituting for $\sin^2 x$ , but                                                                                                                                                                          |          |
|                    | $2 - \cos^2 x + 2 = 7\cos x$ , without supporting working, (eg. seeing " $\sin^2 x = 1 - \cos^2 x$ ") wou                                                                                                                                                   | ld score |
|                    | $1^{st}$ MO.                                                                                                                                                                                                                                                |          |
|                    | Note that applying $\sin^2 x = \cos^2 x - 1$ , scores M0.                                                                                                                                                                                                   |          |
|                    | 1 <sup>st</sup> A1: for obtaining either $2\cos^2 x + 7\cos x - 4$ or $-2\cos^2 x - 7\cos x + 4$ .                                                                                                                                                          |          |
|                    | 1 <sup>st</sup> A1: can also awarded for a correct three term equation eg. $2\cos^2 x + 7\cos x = 4$ or                                                                                                                                                     |          |
|                    | $2\cos^2 x = 4 - 7\cos x \text{ etc.}$                                                                                                                                                                                                                      |          |
|                    | $2^{nd}$ M1: for a valid attempt at factorisation of a quadratic (either 2TQ or 3TQ) in cos, can use variable here, <i>c</i> , <i>y</i> , <i>x</i> or cos <i>x</i> , and an attempt to find at least one of the solutions. See introd                       | •        |
|                    | the Mark Scheme. <i>Alternatively</i> , using a correct formula for solving the quadratic. Either the formula must be stated correctly or the correct form must be implied by the substitution.                                                             |          |
|                    | $2^{nd}$ A1: for cos $x = \frac{1}{2}$ , BY A CORRECT SOLUTION ONLY UP TO THIS POINT. Ignore                                                                                                                                                                | extra    |
|                    | answer of $\cos x = -4$ , but penalise if candidate states an incorrect result e.g. $\cos x = 4$ . If the used a substitution, a correct value of their <i>c</i> or their <i>y</i> or their <i>x</i> .                                                      | y have   |
|                    | <b>Note:</b> $2^{nd} A1$ for $\cos x = \frac{1}{2}$ can be implied by later working.                                                                                                                                                                        |          |
|                    | 1 <sup>st</sup> B1: for either $\frac{\pi}{3}$ or awrt 1.05 <sup>c</sup>                                                                                                                                                                                    |          |
|                    | $2^{\text{nd}}$ B1: for either $\frac{5\pi}{3}$ or awrt 5.24° or can be ft from $2\pi$ – their $\beta$ or 360° – their $\beta$ where                                                                                                                        |          |
|                    | $\beta = \cos^{-1}(k)$ , such that $0 < k < 1$ or $-1 < k < 0$ , but $k \neq 0$ , $k \neq 1$ or $k \neq -1$ .                                                                                                                                               |          |
|                    | If there are any EXTRA solutions inside the range $0 \le x < 2\pi$ and the candidate would other score FULL MARKS then withhold the final bB2 mark (the final mark in this part of the que Also ignore EXTRA solutions outside the range $0 \le x < 2\pi$ . |          |
|                    | <b>Working in Degrees:</b> Note the answers in degrees are $x = 60, 300$                                                                                                                                                                                    |          |
|                    | If a candidate works in degrees then mark part (b) as above awarding the B marks in the sam<br>If the candidate would then score FULL MARKS then withhold the final bB2 mark (the final<br>this part of the question.)<br><b>Answers from no working:</b>   | -        |
|                    | $x = \frac{\pi}{3}$ and $x = \frac{5\pi}{3}$ scores M0A0M0A0B1B1,                                                                                                                                                                                           |          |
|                    | x = 60 and $x = 300$ scores M0A0M0A0B1B0,                                                                                                                                                                                                                   |          |
|                    | $x = \frac{\pi}{3}$ ONLY or $x = 60$ ONLY scores M0A0M0A0B1B0,                                                                                                                                                                                              |          |
|                    | $x = \frac{5\pi}{3}$ ONLY or $x = 120$ ONLY scores M0A0M0A0B0B1.                                                                                                                                                                                            |          |
|                    | No working: You cannot apply the ft in the B1ft if the answers are given with NO working.                                                                                                                                                                   |          |
|                    | Eg: $x = \frac{\pi}{5}$ and $x = \frac{9\pi}{3}$ FROM NO WORKING scores M0A0M0A0B0B0.                                                                                                                                                                       |          |
|                    | For candidates using trial & improvement, please forward these to your Team Leader.                                                                                                                                                                         |          |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        | Marks            |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------|
| <b>8.</b> (a)      | $\{V=\}  2x^2y = 81$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2x^2y = 81$                                                                                           | B1 oe            |
| (u)                | $\left\{L = 2(2x + x + 2x + x) + 4y \implies L = 12x + 4y\right\}$                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                  |
|                    | $y = \frac{81}{2x^2} \implies L = 12x + 4\left(\frac{81}{2x^2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                       | Making <i>y</i> the subject of their expression and substitute this into the correct <i>L</i> formula. | M1               |
|                    | So, $L = 12x + \frac{162}{x^2}$ AG                                                                                                                                                                                                                                                                                                                                                                                                                                           | Correct solution only. AG.                                                                             | A1 cso           |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        | [3]              |
| (b)                | $\frac{dL}{dr} = 12 - \frac{324}{r^3}  \left\{ = 12 - 324x^{-3} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                    | Either $12x \rightarrow 12$ or $\frac{162}{x^2} \rightarrow \frac{\pm \lambda}{x^3}$                   | M1               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rentiation (need not be simplified).                                                                   | A1 aef           |
|                    | $\left\{\frac{dL}{dx} = \right\} 12 - \frac{324}{x^3} = 0 \implies x^3 = \frac{324}{12}; = 27 \implies x = 3$                                                                                                                                                                                                                                                                                                                                                                | $L' = 0$ and "their $x^3 = \pm$ value"<br>or "their $x^{-3} = \pm$ value"                              | M1;              |
|                    | (dx) x 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x = \sqrt[3]{27}$ or $x = 3$                                                                          | A1 cso           |
|                    | $\{x = 3,\}$ $L = 12(3) + \frac{162}{3^2} = 54$ (cm)                                                                                                                                                                                                                                                                                                                                                                                                                         | Substitute candidate's value of $x (\neq 0)$ into a formula for <i>L</i> .                             | ddM1             |
|                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54                                                                                                     | A1 cao<br>[6]    |
|                    | $(T_{1}, q_{1}) = \frac{d^{2}L}{d^{2}} = 972$                                                                                                                                                                                                                                                                                                                                                                                                                                | Correct ft $L''$ and considering sign.                                                                 | M1               |
| (c)                | {For $x = 3$ }, $\frac{d^2 L}{dx^2} = \frac{972}{x^4} > 0 \Rightarrow Minimum$                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{972}{x^4}$ and >0 and conclusion.                                                               | A1 [2]           |
|                    | B1: For any correct form of $2x^2y = 81$ . (may be unsimpli                                                                                                                                                                                                                                                                                                                                                                                                                  | fied) Note that $2r^3 - 81$ is B0. Of                                                                  | 11<br>herwise    |
| (a)<br>(b)         | candidates can use any symbol or letter in place of y.<br>M1: Making y the subject of their formula and substituting<br>A1: Correct solution only. Note that the answer is given.<br><b>Note you can mark parts (b) and (c) together.</b>                                                                                                                                                                                                                                    |                                                                                                        |                  |
|                    | 2 <sup>nd</sup> M1: Setting their $\frac{dL}{dx} = 0$ and "candidate's ft <i>correct</i> ]                                                                                                                                                                                                                                                                                                                                                                                   | power of $x = a$ value". The power of                                                                  | of <i>x</i> must |
|                    | be consistent with their differentiation. If inequalities are used this mark cannot be gained until candidate states value of x or L from their x without inequalities.<br>$L' = 0$ can be implied by $12 = \frac{324}{x^3}$ .                                                                                                                                                                                                                                               |                                                                                                        |                  |
|                    | $2^{nd}$ A1: $x^3 = 27 \implies x = \pm 3$ scores A0.                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                  |
|                    | $2^{nd}$ A1: can be given for no value of x given but followed $L = 54$ .                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                        |                  |
| (c)                | $3^{rd}$ M1: Note that this method mark is dependent upon the M1: for attempting correct ft second derivative and <u>consident</u>                                                                                                                                                                                                                                                                                                                                           | lering its sign.                                                                                       |                  |
|                    | A1: Correct second derivative of $\frac{972}{r^4}$ (need not be simpli-                                                                                                                                                                                                                                                                                                                                                                                                      | ified) and a valid reason (e.g. > 0),                                                                  | and              |
|                    | $x^{*}$ conclusion. Need to conclude minimum (allow x and not L is a minimum) or indicate by a tick that<br>a minimum. The actual value of the second derivative, if found, can be ignored, although substituti<br>their L and not x into L" is A0. Note: 2 marks can be scored from a wrong value of x, no value of x<br>found or from not substituting in the value of their x into L".<br>Gradient test or testing values either side of their x scores M0A0 in part (c). |                                                                                                        |                  |
|                    | <b>Throughout this question allow confused notation such as</b> $\frac{dy}{dx}$ for $\frac{dL}{dx}$ .                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                          |           |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 9.                 | Curve: $y = -x^2 + 2x + 24$ , Line: $y = x + 4$                                                                                                                                                                                                                                                                 |           |
| (a)                | {Curve = Line} $\Rightarrow -x^2 + 2x + 24 = x + 4$ Eliminating y correctly.                                                                                                                                                                                                                                    | B1        |
|                    | $x^{2} - x - 20 \{= 0\} \Rightarrow (x - 5)(x + 4) \{= 0\} \Rightarrow x = \dots$ Attempt to solve a <i>resulting</i> quadratic to give $x =$ their values.                                                                                                                                                     | M1        |
|                    | So, $x = 5, -4$ Both $x = 5$ and $x = -4$ .                                                                                                                                                                                                                                                                     | A1        |
|                    | So corresponding y-values are $y = 9$ and $y = 0$ . See notes below.                                                                                                                                                                                                                                            | B1ft [4]  |
| (b)                | $\left\{ \int (-x^2 + 2x + 24) dx \right\} = -\frac{x^3}{3} + \frac{2x^2}{2} + 24x \left\{ + c \qquad \begin{array}{c} \text{M1:}  x^n \to x^{n+1} \text{ for any one term.} \\ 1^{\text{st}} \text{ A1 at least two out of three terms.} \\ 2^{\text{nd}} \text{ A1 for correct answer.} \end{array} \right\}$ | M1A1A1    |
|                    | $\left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x\right]_{-4}^5 = (\dots) - (\dots)$ Substitutes 5 and -4 (or their limits from part(a)) into an "integrated function" and subtracts, either way round.                                                                                                              | dM1       |
|                    | $\left\{ \left( -\frac{125}{3} + 25 + 120 \right) - \left( \frac{64}{3} + 16 - 96 \right) = \left( 103\frac{1}{3} \right) - \left( -58\frac{2}{3} \right) = 162 \right\}$                                                                                                                                       |           |
|                    | Area of $\Delta = \frac{1}{2}(9)(9) = 40.5$ Uses correct method for finding area of triangle.                                                                                                                                                                                                                   | M1        |
|                    | So area of <i>R</i> is $162 - 40.5 = 121.5$ Area under curve – Area of triangle.                                                                                                                                                                                                                                | M1        |
|                    | 121.5                                                                                                                                                                                                                                                                                                           | A1 oe cao |
|                    |                                                                                                                                                                                                                                                                                                                 | [7]<br>11 |



| Question<br>Number | Scheme                                                                                                                                                                                                                                        | Marks      |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
| (a)                | 1 <sup>st</sup> B1: For correctly eliminating either x or y. Candidates will usually write $-x^2 + 2x + 24 = x + 4$ .                                                                                                                         |            |  |
|                    | This mark can be implied by the resulting quadratic.                                                                                                                                                                                          |            |  |
|                    | M1: For solving their quadratic (which must be different to $-x^2 + 2x + 24$ ) to give $x =$                                                                                                                                                  | See        |  |
|                    | introduction for Method mark for solving a 3TQ. It must result from some attempt to elimina the variables. A1: For both $x = 5$ and $x = -4$ .                                                                                                | ate one of |  |
|                    | 2 <sup>nd</sup> B1ft: For correctly substituting their values of x in equation of line or parabola to give <i>both correct ft</i> y-values. (You may have to get your calculators out if they substitute their x into $y = -x^2 + 2x + 24$ ). |            |  |
|                    | <b>Note:</b> For $x = 5, -4 \Rightarrow y = 9$ and $y = 0 \Rightarrow eg. (-4, 9)$ and $(5, 0)$ , award B1 isw.                                                                                                                               |            |  |
|                    | If the candidate gives additional answers to $(-4, 0)$ and $(5, 9)$ , then withhold the final B1 mark.                                                                                                                                        |            |  |
|                    | <b>Special Case</b> : Award SC: B0M0A0B1 for $\{A\}(-4, 0)$ . You may see this point marked on the diagram.                                                                                                                                   |            |  |
|                    | <b><u>Note:</u></b> SC: B0M0A0B1 for solving $0 = -x^2 + 2x + 24$ to give $\{A\}(-4, 0)$ and/or (6, 10).                                                                                                                                      |            |  |
|                    | Note: Do not give marks for working in part (b) which would be creditable in part (a).                                                                                                                                                        |            |  |
| (b)                | 1 <sup>st</sup> M1 for an attempt to integrate meaning that $x^n \rightarrow x^{n+1}$ for at least one of the terms.                                                                                                                          |            |  |
|                    | Note that $24 \rightarrow 24x$ is sufficient for M1.                                                                                                                                                                                          |            |  |
|                    | 1 <sup>st</sup> A1 at least two out of three terms correctly integrated.                                                                                                                                                                      |            |  |
|                    | $2^{nd}$ A1 for correct integration only and no follow through. Ignore the use of a '+ c'.                                                                                                                                                    |            |  |
|                    | $2^{nd}$ M1: Note that this method mark is dependent upon the award of the first M1 mark in part (b).<br>Substitutes 5 and -4 (and not 4 if the candidate has stated $x = -4$ in part (a).) (or the limits the                                |            |  |
|                    | candidate has found from part(a)) into an "integrated function" and subtracts, either way round. Allow one slip!                                                                                                                              |            |  |
|                    | 3 <sup>rd</sup> M1: Area of triangle = $\frac{1}{2}$ (their $x_2$ – their $x_1$ )(their $y_2$ ) or Area of triangle = $\int_{x_1}^{x_2} x + 4 \{ dx \}$                                                                                       | ¢}.        |  |
|                    | Where $x_1 = \text{their} - 4$ , $x_2 = \text{their 5}$ and $y_2 = \text{their y usually found in part (a)}$ .                                                                                                                                |            |  |
|                    | $4^{\text{th}}$ M1: Area under curve – Area under triangle, where both Area under curve > 0                                                                                                                                                   |            |  |
|                    | and Area under triangle > 0 and Area under curve > Area under triangle.                                                                                                                                                                       |            |  |
|                    | $3^{rd}$ A1: 121.5 or $\frac{243}{2}$ oe <b>cao.</b>                                                                                                                                                                                          |            |  |

| edexcel |  |  |
|---------|--|--|
|---------|--|--|

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                         | Marks                  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| Aliter<br>9.(b)    | Curve: $y = -x^2 + 2x + 24$ , Line: $y = x + 4$<br>Area of $R = \int_{-1}^{5} (-x^2 + 2x + 24) - (x + 4) dx$<br>$A^{\text{th}}$ M1: Uses integral of $(x + 4)$ with correct ft limits.<br>$A^{\text{th}}$ M1: Uses "curve" "line"                                                                                                              |                        |  |
| Way 2              | function with correct ft limits.<br>$M: r^n \rightarrow r^{n+1}$ for any one term                                                                                                                                                                                                                                                              | M1                     |  |
|                    | $= -\frac{x^3}{3} + \frac{x^2}{2} + 20x \{+c\}$<br>A1 at least two out of three terms<br>Correct answer (Ignore + c).<br>Substitutes 5 and -4 (or <i>their limits</i> from                                                                                                                                                                     | A1ft<br>A1             |  |
|                    | $\left\lfloor -\frac{x}{3} + \frac{x}{2} + 20x \right\rfloor_{-4} = (\dots) - (\dots) $ part(a)) into an "integrated function" and subtracts, either way round.                                                                                                                                                                                | dM1                    |  |
|                    | $\left\{ \left( -\frac{125}{3} + \frac{25}{2} + 100 \right) - \left( \frac{64}{3} + 8 - 80 \right) = \left( 70\frac{5}{6} \right) - \left( -50\frac{2}{3} \right) \right\}$<br>See above working to decide to award 3 <sup>rd</sup> M1 mark here:                                                                                              | M1                     |  |
|                    | So area of <i>R</i> is = 121.5 See above working to decide to award 4 <sup>th</sup> M1 mark here:<br>121.5                                                                                                                                                                                                                                     | M1<br>A1 oe <b>cao</b> |  |
|                    |                                                                                                                                                                                                                                                                                                                                                | [7]<br>11              |  |
| (b)                | 1 <sup>st</sup> M1 for an attempt to integrate meaning that $x^n \rightarrow x^{n+1}$ for at least one of the terms.                                                                                                                                                                                                                           |                        |  |
|                    | Note that $20 \rightarrow 20x$ is sufficient for M1.                                                                                                                                                                                                                                                                                           |                        |  |
|                    | $1^{st}$ A1 at least two out of three terms correctly ft. Note this accuracy mark is ft in Way 2. $2^{nd}$ A1 for correct integration only and no follow through. Ignore the use of a '+ c'.                                                                                                                                                   |                        |  |
|                    | Allow $2^{nd}$ A1 also for $-\frac{x^3}{3} + \frac{2x^2}{2} + 24x - \left(\frac{x^2}{2} + 4x\right)$ . Note that $\frac{2x^2}{2} - \frac{x^2}{2}$ or $24x - 4x$ only counts                                                                                                                                                                    |                        |  |
|                    | as one integrated term for the 1 <sup>st</sup> A1 mark. Do not allow any extra terms for the 2 <sup>nd</sup> A1 mark.<br>2 <sup>nd</sup> M1: Note that this method mark is dependent upon the award of the first M1 mark in part (b).<br>Substitutes 5 and -4 (and not 4 if the candidate has stated $x = -4$ in part (a).) (or the limits the |                        |  |
|                    | candidate has found from part(a)) into an "integrated function" and subtracts, either way round. Allow one slip!<br>$3^{rd}$ M1: Uses the integral of $(x + 4)$ with correct ft limits of their $x_1$ and their $x_2$ (usually found in part                                                                                                   |                        |  |
|                    | (a)) {where $(x_1, y_1) = (-4, 0)$ and $(x_2, y_2) = (5, 9)$ . } This mark is usually found in the first line of the                                                                                                                                                                                                                           |                        |  |
|                    | candidate's working in part (b).<br>4 <sup>th</sup> M1: Uses "curve" – "line" function with correct ft (usually found in part (a)) limits. Subtraction mube correct way round. This mark is usually found in the first line of the candidate's working in part (b)                                                                             |                        |  |
|                    | Allow $\int_{-4}^{5} (-x^2 + 2x + 24) - x + 4 \{dx\}$ for this method mark.                                                                                                                                                                                                                                                                    |                        |  |
|                    | 3 <sup>rd</sup> A1: 121.5 oe cao.<br>Note: SPECIAL CASE for this alternative method                                                                                                                                                                                                                                                            |                        |  |
|                    | Area of $R = \int_{-4}^{5} (x^2 - x - 20) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} - 20x\right]_{-4}^{5} = \left(\frac{125}{3} - \frac{25}{2} - 100\right) - \left(-\frac{64}{3} - 8 + 80\right)$                                                                                                                                              |                        |  |
|                    | The working so far would score SPEICAL CASE M1A1A1M1M0A0.                                                                                                                                                                                                                                                                                      |                        |  |
|                    | The candidate may then go on to state that $=\left(-70\frac{5}{6}\right)-\left(50\frac{2}{3}\right)=-\frac{243}{2}$                                                                                                                                                                                                                            |                        |  |
|                    | If the candidate then multiplies their answer by -1 then they would gain the 4 <sup>th</sup> M1 and 121.5 the final A1 mark.                                                                                                                                                                                                                   | 5 would gain           |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks               |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Aliter             | Curve: $y = -x^2 + 2x + 24$ , Line: $y = x + 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| <b>9.</b> (a)      | {Curve = Line} $\Rightarrow y = -(y-4)^2 + 2(y-4) + 24$ Eliminating x correctly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1                  |
| Way 2              | $y^2 - 9y \{=0\} \Rightarrow y(y-9) \{=0\} \Rightarrow y =$ Attempt to solve a resulting quadratic to give $y =$ their values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                  |
|                    | So, $y = 0, 9$ Both $y = 0$ and $y = 9$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1                  |
|                    | So corresponding <i>y</i> -values are $x = -4$ and $x = 5$ . See notes below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1ft [4]            |
|                    | $2^{nd}$ B1ft: For correctly substituting their values of y in equation of line or parabola to give <b>b</b> ase x-values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| <b>9.</b> (b)      | Alternative Methods for obtaining the M1 mark for use of limits:<br>There are two alternative methods can candidates can apply for finding "162".<br>Alternative 1:<br>$\int_{-4}^{0} (-x^{2} + 2x + 24) dx + \int_{0}^{5} (-x^{2} + 2x + 24) dx$ $= \left[ -\frac{x^{3}}{3} + \frac{2x^{2}}{2} + 24x \right]_{-4}^{0} + \left[ -\frac{x^{3}}{3} + \frac{2x^{2}}{2} + 24x \right]_{0}^{5}$ $= (0) - \left( \frac{64}{3} + 16 - 96 \right) + \left( -\frac{125}{3} + 25 + 120 \right) - (0)$ $= \left( 103\frac{1}{3} \right) - \left( -58\frac{2}{3} \right) = 162$ Alternative 2:<br>$\int_{-4}^{6} (-x^{2} + 2x + 24) dx - \int_{5}^{6} (-x^{2} + 2x + 24) dx$ $= \left[ -\frac{x^{3}}{3} + \frac{2x^{2}}{2} + 24x \right]_{-4}^{6} - \left[ -\frac{x^{3}}{3} + \frac{2x^{2}}{2} + 24x \right]_{5}^{6}$ $= \left\{ \left( -\frac{216}{3} + 36 + 144 \right) - \left( \frac{64}{3} + 16 - 96 \right) \right\} - \left\{ \left( -\frac{216}{3} + 36 + 144 \right) - \left( -\frac{125}{3} + 2x^{2} + 24x \right) \right\}$ $= \left\{ \left( 108 \right) - \left( -58\frac{2}{3} \right) \right\} - \left\{ \left( 108 \right) - \left( 103\frac{1}{3} \right) \right\}$ $= \left( 166\frac{2}{3} \right) - \left( 4\frac{2}{3} \right) = 162$ | $25+120\Big)\Big\}$ |



#### Appendix

#### List of Abbreviations

- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- ft or  $\sqrt{}$  denotes "follow through"
- cao denotes "correct answer only"
- aef denotes "any equivalent form"
- cso denotes "correct solution only"
- AG or \* denotes "answer given" (in the question paper.)
- awrt denotes "anything that rounds to"
- aliter denotes "alternative methods"

#### **Extra Solutions**

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

| Question<br>Number             | Scheme                                                                                                                    |               |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------|--|
|                                | $(x+2)^2 + (y-1)^2 = 16$ , centre $(x_1, y_1) = (-2, 1)$ and radius $r = 4$ .                                             |               |  |
| Aliter                         | $d_1 = \sqrt{4^2 - 2^2} = \sqrt{12}$ Applying $\sqrt{\text{their } r^2 -  \text{their } x_1 ^2}$                          | M1            |  |
| <b>4.</b> (c)                  | $\sqrt{12}$                                                                                                               | A1 aef        |  |
| Way 2                          | Hence, $y = 1 \pm \sqrt{12}$ Applies $y = \text{their } y_1 \pm \text{ their } d$                                         | M1            |  |
|                                | So, $y = 1 \pm 2\sqrt{3}$ $1 \pm 2\sqrt{3}$                                                                               | A1 cao<br>cso |  |
|                                |                                                                                                                           | [4]           |  |
|                                | Special Case: Award Final SC: M1A1 M1A0 if candidate achieves any one of either                                           |               |  |
|                                | $y = 1 + 2\sqrt{3}$ or $y = 1 - 2\sqrt{3}$ or $y = 1 + \sqrt{12}$ or $y = 1 - \sqrt{12}$ .                                |               |  |
|                                |                                                                                                                           |               |  |
| <i>Aliter</i><br><b>8.</b> (a) | $2x^2\left(\frac{L-12x}{4}\right) = 81$ $2x^2\left(\frac{L-12x}{4}\right) = 81$                                           | B1 oe         |  |
| Way 2                          | $\Rightarrow x^{2}(L-12x) = 162 \Rightarrow L = 12x + \frac{162}{x^{2}}$ Rearranges their equation to make y the subject. | M1            |  |
|                                | $\Rightarrow x (L-12x) = 162 \Rightarrow L = 12x + \frac{1}{x^2}$ Correct solution only. AG.                              | A1 cso        |  |
|                                |                                                                                                                           | [3]           |  |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email publication.orders@edexcel.com Order Code UA027654 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE





