edexcel

Mark Scheme (Results)

Summer 2013

GCE Core Mathematics 2 (6664/01)

www.igexams.com

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2013
Publications Code UA035664
All the material in this publication is copyright
© Pearson Education Ltd 2013

www.igexams.com

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

wWw.igexams.com
 edexcel gCe mathemati cs

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol \int will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

www.igexams.com

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text {, where }|p q|=|c| \text {, leading to } \mathrm{x}= \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text {, where }|p q|=|c| \text { and }|m n|=|a| \text {, leading to } \mathrm{x}=
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1 . $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \({ }^{\text {arks }}\) \\
\hline 2. (a)

(b) \& | $\begin{aligned} & (2+3 x)^{4} \text { - Mark (a) and (b) together } \\ & 2^{4}+{ }^{4} C_{1} 2^{3}(3 x)+{ }^{4} C_{2} 2^{2}(3 x)^{2}+{ }^{4} C_{3} 2^{1}(3 x)^{3}+(3 x)^{4} \end{aligned}$ |
| :--- |
| First term of 16 $\left({ }^{4} C_{1} \times \ldots \times x\right)+\left({ }^{4} C_{2} \times \ldots \times x^{2}\right)+\left({ }^{4} C_{3} \times \ldots \times x^{3}\right)+\left({ }^{4} C_{4} \times \ldots \times x^{4}\right)$ $=(16+) 96 x+216 x^{2}+216 x^{3}+81 x^{4} \quad \text { Must use Binomial }- \text { otherwise A0, }$ $(2-3 x)^{4}=16-96 x+216 x^{2}-216 x^{3}+81 x^{4}$ |

\hline Alternative method (a) \& | $\begin{aligned} & (2+3 x)^{4}=2^{4}\left(1+\frac{3 x}{2}\right)^{4} \\ & 2^{4}\left(1+{ }^{4} C_{1}\left(\frac{3 x}{2}\right)+{ }^{4} C_{2}\left(\frac{3 x}{2}\right)^{2}+{ }^{4} C_{3}\left(\frac{3 x}{2}\right)^{3}+\left(\frac{3 x}{2}\right)^{4}\right) \end{aligned}$ |
| :--- |
| Scheme is applied exactly as before |

\hline \& Notes for Question 2

\hline (a) \& | B1: The constant term should be 16 in their expansion |
| :--- |
| M1: Two binomial coefficients must be correct and must be with the correct power of x. Accept ${ }^{4} C_{1}$ or $\binom{4}{1}$ or 4 as a coefficient, and ${ }^{4} C_{2}$ or $\binom{4}{2}$ or 6 as another........ Pascal's triangle may be used to establish coefficients. |
| A1: Any two of the final four terms correct (i.e. two of $96 x+216 x^{2}+216 x^{3}+81 x^{4}$) in expansion following Binomial Method. |
| A1: All four of the final four terms correct in expansion. (Accept answers without + signs, can be listed with commas or appear on separate lines) |
| B1ft: Award for correct answer as printed above or $\mathbf{f t}$ their previous answer provided it has five terms ft and must be subtracting the x and x^{3} terms |
| Allow terms in (b) to be in descending order and allow $+-96 x$ and $+-216 x^{3}$ in the series. (Accept answers without + signs, can be listed with commas or appear on separate lines) |

\hline \& | e.g. The common error $2^{4}+{ }^{4} C_{1} 2^{3} 3 x+{ }^{4} C_{2} 2^{2} 3 x^{2}+{ }^{4} C_{3} 2^{1} 3 x^{3}+3 x^{4}=(16)+96 x+72 x^{2}+24 x^{3}+3 x^{4}$ would earn B1, M1, A0, A0, and if followed by $=(16)-96 x+72 x^{2}-24 x^{3}+3 x^{4}$ gets B1ft so 3/5 |
| :--- |
| Fully correct answer with no working can score B1 in part (a) and B1 in part (b). The question stated use the Binomial theorem and if there is no evidence of its use then M mark and hence A marks cannot be earned. Squaring the bracket and squaring again may also earn B1 M0 A0 A0 B1 if correct Omitting the final term but otherwise correct is B1 M1 A1 A0 B0ft so 3/5 If the series is divided through by 2 or a power of 2 at the final stage after an error or omission resulting in all even coefficients then apply scheme to series before this division and ignore subsequent work (isw) |

\hline
\end{tabular}

wWW.igexams.com

Question Number	Scheme	Marks
$\begin{gathered} \text { 7. (i) } \\ \text { Method } 1 \end{gathered}$	$\begin{aligned} & \log _{2}\left(\frac{2 x}{5 x+4}\right)=-3 \text { or } \log _{2}\left(\frac{5 x+4}{2 x}\right)=3, \text { or } \log _{2}\left(\frac{5 x+4}{x}\right)=4 \text { (see special case 2) } \\ & \left(\frac{2 x}{5 x+4}\right)=2^{-3} \text { or }\left(\frac{5 x+4}{2 x}\right)=2^{3} \text { or }\left(\frac{5 x+4}{x}\right)=2^{4} \text { or }\left(\log _{2}\left(\frac{2 x}{5 x+4}\right)\right)=\log _{2}\left(\frac{1}{8}\right) \\ & 16 x=5 x+4 \Rightarrow x=\text { (depends on previous Ms and must be this equation or equivalent) } \\ & \quad x=\frac{4}{11} \text { or exact recurring decimal } 0 . \dot{3} \dot{6} \text { after correct work } \end{aligned}$	M1 M1 dM1 A1 cso (4)
7(i) ${ }^{\text {(i) }}$	$\log _{2}(2 x)+3=\log _{2}(5 x+4)$ So $\log _{2}(2 x)+\log _{2}(8)=\log _{2}(5 x+4) \quad\left(3\right.$ replaced by $\left.\log _{2} 8\right)$ Then $\log _{2}(16 x)=\log _{2}(5 x+4) \quad$ (addition law of logs) Then final M1 A1 as before	$\begin{array}{\|l\|} \hline 2^{\text {nd }} \text { M1 } \\ 1^{\text {st }} \text { M1 } \\ \text { dM1A1 } \\ \hline \end{array}$
(ii)	$\begin{aligned} & \log _{a} y+\log _{a} 2^{3}=5 \\ & \log _{a} 8 y=5 \\ & y=\frac{1}{8} a^{5} \end{aligned}$ Applies product law of logarithms. $y=\frac{1}{8} a^{5}$	M1 dM1 A1cao (3) [7]
	Notes for Question 7	
(i) (ii)	$1^{\text {st }} \mathrm{M} 1$: Applying the subtraction or addition law of logarithms correctly to make two \log terms in x into one log term in x $2^{\text {nd }}$ M1: For RHS of either $2^{-3}, 2^{3}, 2^{4}$ or $\log _{2}\left(\frac{1}{8}\right), \log _{2} 8$ or $\log _{2} 16$ i.e. using connection between \log base 2 and 2 to a power. This may follow an earlier error. Use of 3^{2} is M0 $3^{\text {rd }} \mathrm{dM} 1$: Obtains correct linear equation in x. usually the one in the scheme and attempts $x=$ A1: cso Answer of $4 / 11$ with no suspect \log work preceding this. M1: Applies power law of $\log ^{2}$ arithms to replace $3 \log _{a} 2$ by $\log _{a} 2^{3}$ or $\log _{a} 8$ dM1: (should not be following M0) Uses addition law of ${\operatorname{logs~to~give~} \log _{a} 2^{3} y=5 \text { or } \log _{a} 8 y=5}$	
(i)	Special case 1: $\log _{2}(2 x)=\log _{2}(5 x+4)-3 \Rightarrow \frac{\log _{2}(2 x)}{\log _{2}(5 x+4)}=-3 \Rightarrow \frac{2 x}{5 x+4}=2^{-3} \Rightarrow x=\frac{4}{11}$ or $\log _{2}(2 x)=\log _{2}(5 x+4)-3 \Rightarrow \frac{\log _{2}(2 x)}{\log _{2}(5 x+4)}=-3 \Rightarrow \log _{2} \frac{2 x}{5 x+4}=-3 \Rightarrow \frac{2 x}{5 x+4}=2^{-3} \Rightarrow x=\frac{4}{11}$ each attempt scores M0M1M1A0 - special case	
	Special case 2: $\log _{2}(2 x)=\log _{2}(5 x+4)-3 \Rightarrow \log _{2} 2+\log _{2} x=\log _{2}(5 x+4)-3$, is M0 until the two log terms are combined to give $\log _{2}\left(\frac{5 x+4}{x}\right)=3+\log _{2} 2$. This earns M1 Then $\left(\frac{5 x+4}{x}\right)=2^{4}$ or $\log _{2}\left(\frac{5 x+4}{x}\right)=\log _{2} 2^{4}$ gets second M1. Then scheme as before.	

www.igexams.com

Question Number	Scheme	Marks
10. (a)	Equation of form $(x \pm 5)^{2}+(y \pm 9)^{2}=k, k>0$ Equation of form $(x-a)^{2}+(y-b)^{2}=5^{2}$, with values for a and b $(x+5)^{2}+(y-9)^{2}=25=5^{2}$ $P(8,-7)$. Let centre of circle $=X(-5,9)$ $P X^{2}=(8-"-5 ")^{2}+(-7-" 9 ")^{2} \text { or } P X=\sqrt{(8--5)^{2}+(-7-9)^{2}}$ $(P X=\sqrt{425}$ or $5 \sqrt{17}) \quad P T^{2}=(P X)^{2}-5^{2}$ with numerical $P X$ $P T\{=\sqrt{400}\}=20 \quad \text { (allow 20.0) }$	
$\begin{array}{\|l} \hline \text { Alternative } \\ 2 \text { for (a) } \end{array}$	Equation of the form $x^{2}+y^{2} \pm 10 x \pm 18 y+c=0$ Uses $a^{2}+b^{2}-5^{2}=c$ with their a and b or substitutes $(0,9)$ giving $+9^{2} \pm 2 b \times 9+c=0$ $x^{2}+y^{2}+10 x-18 y+81=0$	M1 M1 A1 (3)
Alternative 2 for (b)	An attempt to find the point T may result in pages of algebra, but solution needs to reach $(-8,5)$ or $\left(\frac{-8}{17}, 11 \frac{2}{17}\right)$ to get first M1 (even if gradient is found first) M1: Use either of the correct points with $P(8,-7)$ and distance between two points formula A1: 20	M1 dM1 A1cso (3)
$\begin{array}{\|l} \hline \text { Alternative } \\ \mathbf{3} \text { for (b) } \end{array}$	Substitutes (8, -7) into circle equation so $P T^{2}=8^{2}+(-7)^{2}+10 \times 8-18 \times(-7)+81$ Square roots to give $P T\{=\sqrt{400}\}=20$	M1 dM1A1 (3)
	Notes for Question 10	
(a) (b)	The three marks in (a) each require a circle equation - (see special cases which are not circles) M1: Uses coordinates of centre to obtain LHS of circle equation (RHS must be r^{2} or $k>0$ or a positive value) M1: Uses $r=5$ to obtain RHS of circle equation as 25 or 5^{2} A1: correct circle equation in any equivalent form Special cases $(x \pm 5)^{2}+(x \pm 9)^{2}=\left(5^{2}\right)$ is not a circle equation so M0M0A0 Also $(x \pm 5)^{2}+(y-9)=\left(5^{2}\right)$ And $(x \pm 5)^{2}-(y \pm 9)^{2}=\left(5^{2}\right)$ are not circles and gain M0M0A0 But $(x-0)^{2}+(y-9)^{2}=5^{2}$ gains M0M1A0 M1: Attempts to find distance from their centre of circle to P (or square of this value). If this is called $P T$ and given as answer this is M0. Solution may use letter other than X, as centre was not labelled in the question. N.B. Distance from $(0,9)$ to $(8,-7)$ is incorrect method and is M0, followed by M0A0. dM1: Applies the subtraction form of Pythagoras to find $P T$ or $P T^{2}$ (depends on previous method mark for distance from centre to \boldsymbol{P}) or uses appropriate complete method involving trigonometry A1: 20 cso	

www.igexams.com

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA035664 Summer 2013

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

