edexcel 쁯

Mark Scheme (Results)
Summer 2014

Pearson Edexcel GCE in Core Mathematics 2 (6664_01)

www.igexams.com

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038455
All the material in this publication is copyright
© Pearson Education Ltd 2014

www.igexams.com

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

www.igexams.com

PEARSON EDEXCEL GCE MATHEMATICS

General I nstructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

www.igexams.com

5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

www.igexams.com

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

www.igexams.com

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme					Marks	
1.(a)	x 1	1.25	1.5	1.75	2		
	y \|	1.414	1.601	1.803	2.016	2.236	
	$\{$ At $x=1.25\} y=$,1.601 (only)		1.601 (May not be in the table and can score if seen as part of their working in (b))			B1 cao	
						1]	
(b)	$\frac{1}{2} \times 0.25 ; \times \underline{\{1.414+2.236+2(\text { their } 1.601+1.803+2.016)\}}$					$\begin{aligned} & \text { B1; } \\ & \text { M1 A1ft } \end{aligned}$	
	B1; for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ or equivalent.	$\frac{\text { M1: }}{\{\ldots}$	$\frac{\text { cture of }}{\ldots \ldots .\}}$	A1ft: as sh candi part	he correct expression following through 's y value found in		
	M1 requires the correct structure for the y values. It needs to contain first y value plus last y value and the second bracket to be multiplied by 2 and to be the summation of the remaining y values in the table with no additional values. If the only mistake is a copying error or is to omit one value from $2(\ldots .$.$) bracket this may be regarded as a slip and the \mathrm{M}$ mark can be allowed (nb: an extra repeated term, however, forfeits the M mark). M0 if any values used are x values instead of y values. A1ft: for the correct underlined expression as shown following through candidate's y value found in part (a). Bracketing mistakes: e.g. $\begin{aligned} & \left(\frac{1}{2} \times \frac{1}{4}\right)(1.414+2.236)+2(\text { their } 1.601+1.803+2.016)(=11.29625) \\ & \left(\frac{1}{2} \times \frac{1}{4}\right) 1.414+2.236+2(\text { their } 1.601+1.803+2.016)(=13.25275) \end{aligned}$ Both score B1 M1 A0 unless the final answer implies that the calculation has been done correctly (then full marks could be given). Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{8}(1.414+1.601)+\frac{1}{8}(1.601+1.803)+\frac{1}{8}(1.803+2.016)+\frac{1}{8}(2.016+2.236)\right]$ B1 for $\frac{1}{8}$ (aef), M1 for correct structure, 1st A1ft for correct expression, ft their 1.601						
	$\left\{=\frac{1}{8}(14.49)\right\}=1.81125$		1.81 or awrt 1.81			A1	
	Correct answer only in (b) scores no marks If required accuracy is not seen in (a), full marks can still be scored in (b) (e.g. uses 1.6)						
	If					[4]	
						Total 5	

www.igexams.com

Question Number	Scheme		Marks
If there is no labelling, mark (a) and (b) in that order			
$\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}-7 x^{2}+4 x+4$			
2.(a)	$f(2)=2(2)^{3}-7(2)^{2}+4(2)+4$	Attempts $\mathrm{f}(2)$ or $\mathrm{f}(-2)$	M1
	$=0$, and so ($x-2$) is a factor.	$\mathrm{f}(\mathbf{2})=0$ with no sign or substitution errors $\left(2(2)^{3}-7(2)^{2}+4(2)+4=0\right.$ is sufficient) and for conclusion. Stating "hence factor" or "it is a factor" or a "tick" or "QED" or "no remainder" or "as required" are fine for the conclusion but not $=\mathbf{0}$ just underlined and not hence (2 or $f(2)$) is a factor. Note also that a conclusion can be implied from a preamble, eg: "If $\mathrm{f}(2)=0,(x-2)$ is a factor...."	A1
	Note: Long division scores no marks in part (a). The factor theorem is required.		
			[2]
(b)	$f(x)=\{(x-2)\}\left(2 x^{2}-3 x-2\right)$	M1: Attempts long division by $(x-2)$ or other method using ($x-2$), to obtain ($2 x^{2} \pm a x \pm b$), $a \neq 0$, even with a remainder. Working need not be seen as this could be done "by inspection."	M1 A1
		A1: $\left(2 x^{2}-3 x-2\right)$	
	$\begin{gathered} =(x-2)(x-2)(2 x+1) \text { or }(x-2)^{2}(2 x+1) \\ \text { or equivalent e.g. } \\ =2(x-2)(x-2)\left(x+\frac{1}{2}\right) \text { or } 2(x-2)^{2}\left(x+\frac{1}{2}\right) \end{gathered}$	dM1: Factorises a 3 term quadratic. (see rule for factorising a quadratic in the General Principles for Core Maths Marking). This is dependent on the previous method mark being awarded but there must have been no remainder. Allow an attempt to solve the quadratic to determine the factors.	dM1 A1
		A1: cao - needs all three factors on one line. Ignore following work (such as a solution to a quadratic equation.)	
	Note $=(x-2)\left(\frac{1}{2} x-1\right)(4 x+2)$ would lose the last mark as it is not fully factorised		
	For correct answers only award full marks in (b)		
			[4]
			Total 6

www.igexams.com

Question Number	Scheme		Marks
3. (a)	$(2-3 x)^{6}=64+\ldots$.	64 seen as the only constant term in their expansion.	B1
	$\left\{(2-3 x)^{6}\right\}=(2)^{6}+{ }^{6} \mathrm{C}_{1}(2)^{5}(-3 \underline{x})+{ }^{6} \mathrm{C}_{2}(2)^{4}(-3 x)^{2}+\ldots$		M1
	M1: $\left({ }^{6} \mathrm{C}_{1} \times \ldots \times x\right)$ or $\left({ }^{6} \mathrm{C}_{2} \times \ldots \times x^{2}\right)$. For either the x term or the x^{2} term. Requires correct binomial coefficient in any form with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or -3) may be wrong or missing. The terms can be "listed" rather than added. Ignore any extra terms.		
	${ }^{6} \mathrm{C}_{1} 2^{5}-3 x+{ }^{6} \mathrm{C}_{2} 2^{4}-3 x^{2}+\ldots$ Scores M0 unless later work implies a correct method		
	$=64-576 x+2160 x^{2}+\ldots$	$\begin{aligned} & \text { A1: Either }-576 x \text { or } 2160 x^{2} \\ & \text { (Allow }+-576 x \text { here) } \end{aligned}$	A1A1
		A1: Both $-576 x$ and $2160 x^{2}$ (Do not allow + $-576 x$ here)	
			4
(a) Way 2	$(2-3 x)^{6}=64+\ldots$.	64 seen as the only constant term in their expansion.	B1
	$\left(1-\frac{3}{2} x\right)^{6}=1+{ }^{6} \mathrm{C}_{1}\left(\frac{-3}{2} \underline{x}\right)+{ }^{6} \mathrm{C}_{2}\left(\frac{-3}{2} \underline{x}\right)^{\underline{2}}+\ldots$	M1: $\left({ }^{6} \mathrm{C}_{1} \times \ldots \times x\right)$ or $\left({ }^{6} \mathrm{C}_{2} \times \ldots \times x^{2}\right)$. For either the x term or the x^{2} term. Requires correct binomial coefficient in any form with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or -3) may be wrong or missing. The terms can be "listed" rather than added. Ignore any extra terms.	M1
	$=64-576 x+2160 x^{2}+\ldots$	$\begin{aligned} & \text { A1: Either }-576 x \text { or } 2160 x^{2} \\ & \text { (Allow }+-576 x \text { here) } \end{aligned}$	A1A1
		$\begin{aligned} & \text { A1: Both }-576 x \text { and } 2160 x^{2} \\ & \text { (Do not allow }+-576 x \text { here) } \end{aligned}$	
(b)	Candidate writes down $\left(1+\frac{x}{2}\right) \times($ their part (a) answer, at least up to the term in $x)$. (Condone missing brackets) $\begin{gathered} \left(1+\frac{x}{2}\right)(64-576 x+\ldots) \text { or }\left(1+\frac{x}{2}\right)\left(64-576 x+2160 x^{2}+\ldots\right) \text { or } \\ \left(1+\frac{x}{2}\right) 64-\left(1+\frac{x}{2}\right) 576 x \text { or }\left(1+\frac{x}{2}\right) 64-\left(1+\frac{x}{2}\right) 576 x+\left(1+\frac{x}{2}\right) 2160 x^{2} \\ \text { or } 64+32 x,-576 x-288 x^{2}, 2160 x^{2}+1080 x^{3} \text { are fine. } \end{gathered}$		M1
	$=64-544 x+1872 x^{2}+\ldots$	A1: At least 2 terms correct as shown. (Allow + - 544x here)	A1A1
		A1: $64-544 x+1872 x^{2}$ The terms can be "listed" rather than added. Ignore any extra terms.	
			[3]
			Total 7
	SC: If a candidate expands in descending powers of x, only the M marks are available		
	e.g. $\left\{(2-3 x)^{6}\right\}=(-3 x)^{6}+{ }^{6} \mathrm{C}_{1}(2)^{2}(-3 x)^{5}+{ }^{6} \mathrm{C}_{2}(2)^{2}(-3 x)^{4}+\ldots$		

www.igexams.com

Question Number	Scheme	Marks
4.	M1: $x^{n} \rightarrow x^{n+1}$	
	A1: At least one of either $\frac{x^{4}}{6(4)}$ or $\frac{x^{-1}}{(3)(-1)}$	
	$\left\{\int\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\frac{x^{4}}{6(4)}+\frac{x^{-1}}{(3)(-1)}$ A1: $\frac{x^{4}}{6(4)}+\frac{x^{-1}}{(3)(-1)}$ or equivalent. e.g. $\frac{\frac{x^{4}}{6}}{4}+\frac{\frac{x^{-1}}{3}}{-1}$ (they will lose the final mark if they cannot deal with this correctly)	M1A1A1
	Note that some candidates may change the function prior to integrating e.g. $\int \frac{x^{3}}{6}+\frac{1}{3 x^{2}} \mathrm{~d} x=\int 3 x^{5}+6 \mathrm{~d} x$ in which case allow the $M 1$ if $x^{n} \rightarrow x^{n+1}$ for their changed function and allow the M1 for limits if scored	
	$\left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\left(\frac{(\sqrt{3})^{4}}{24}+\frac{(\sqrt{3})^{-1}}{-1(3)}\right)-\left(\frac{(1)^{4}}{24}+\frac{(1)^{-1}}{-1(3)}\right)$	dM1
	$2^{\text {nd }} \mathbf{d M} 1$: For using limits of $\sqrt{3}$ and 1 on an integrated expression and subtracting the correct way round. The $2^{\text {nd }} \mathrm{M} 1$ is dependent on the $1^{\text {st }} \mathrm{M} 1$ being awarded.	
	$=\left(\frac{9}{24}-\frac{1}{3 \sqrt{3}}\right)-\left(\frac{1}{24}-\frac{1}{3}\right)=\frac{2}{3}-\frac{1}{9} \sqrt{3} \quad \begin{aligned} & \frac{2}{3}-\frac{1}{9} \sqrt{3} \text { or } a=\frac{2}{3} \text { and } b=-\frac{1}{9} . \\ & \text { Allow equivalent fractions for } a \text { and/or } b \text { and } \\ & 0.6 \text { recurring and/or } 0.1 \text { recurring but do not } \\ & \text { allow } \frac{6-\sqrt{3}}{9} \end{aligned}$	A1cso
	This final mark is cao and cso - there must have been no previous errors	
		Total 5
	Common Errors (Usually 3 out of 5)	
	$\begin{gathered} \left\{\int\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\int\left(\frac{x^{3}}{6}+3 x^{-2}\right) \mathrm{d} x=\frac{x^{4}}{6(4)}+\frac{3 x^{-1}}{(-1)} \text { M1A1A0 } \\ \left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\left(\frac{(\sqrt{3})^{4}}{24}+\frac{3(\sqrt{3})^{-1}}{-1}\right)-\left(\frac{(1)^{4}}{24}+\frac{3(1)^{-1}}{-1}\right) \mathrm{dM} 1 \\ =\left(\frac{9}{24}-\frac{3}{\sqrt{3}}\right)-\left(\frac{1}{24}+\frac{3}{-1}\right)=\frac{10}{3}-\sqrt{3} \text { A0 } \end{gathered}$	
	$\begin{gathered} \left\{\int\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\int\left(\frac{x^{3}}{6}+(3 x)^{-2}\right) \mathrm{d} x=\frac{x^{4}}{6(4)}+\frac{(3 x)^{-1}}{(-1)} \mathrm{M} 1 \mathrm{~A} 1 \mathrm{~A} 0 \\ \left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\left(\frac{(\sqrt{3})^{4}}{24}+\frac{(3 \sqrt{3})^{-1}}{-1}\right)-\left(\frac{(1)^{4}}{24}+\frac{(3 \times 1)^{-1}}{-1}\right) \mathrm{dM} 1 \\ =\left(\frac{9}{24}-\frac{1}{3 \sqrt{3}}\right)-\left(\frac{1}{24}-\frac{1}{3}\right)=\frac{2}{3}-\frac{\sqrt{3}}{9} \text { A0 } \end{gathered}$ Note this is the correct answer but follows incorrect work.	

www.igexams.com

www.igexams.com

Question	Scheme		Marks
6(a)	$S=\frac{20}{1-1} \cdot=160$	M1: Use of a correct S_{∞} formula	M1A1
	1-7 $\frac{7}{8}$	A1: 160	
	Accept correct answer only (160)		
			[2]
(b)	$S_{\text {c }}=\frac{20\left(1-\left(\frac{7}{8}\right)^{12}\right)}{1-2} 7277324$	M1: Use of a correct S_{n} formula with $n=12$ (condone missing brackets around 7/8)	M1A1
		A1: awrt 127.8	
	T \& I in (b) requires all 12 terms to be calculated correctly for M1 and A1 for awrt 127.8		
			[2]
(c)	$160-\frac{20\left(1-\left(\frac{7}{8}\right)^{N}\right)}{1-\frac{7}{8}}<0.5$	Applies S_{N} (GP only) with $a=20, r=\frac{7}{8}$ and "uses" 0.5 and their S_{∞} at any point in their working. (condone missing brackets around $7 / 8$)(Allow $=,<,>, \geq, \leq$) but see note below.	M1
	$160\left(\frac{7}{8}\right)^{N}<(0.5)$ or $\left(\frac{7}{8}\right)^{N}<\left(\frac{0.5}{160}\right)$	Attempt to isolate $+160\left(\frac{7}{8}\right)^{N}$ or $+\left(\frac{7}{8}\right)^{N}$ oe (Allow $=,<,>, \geq$, \leq) but see note below. Dependent on the previous M1	dM1
	$N \log \left(\frac{7}{8}\right)<\log \left(\frac{0.5}{160}\right)$	Uses the power law of logarithms or takes logs base 0.875 correctly to obtain an equation or an inequality of the form $\begin{gathered} N \log \left(\frac{7}{8}\right)<\log \left(\frac{0.5}{\text { their } \mathrm{S}_{\infty}}\right) \\ \quad \text { or } \\ N>\log _{0.875}\left(\frac{0.5}{\text { their } \mathrm{S}_{\infty}}\right) \end{gathered}$ (Allow $=,<,>, \geq, \leq$) but see note below.	M1
	$N>\frac{\log \left(\frac{0.5}{160}\right)}{\log \left(\frac{7}{8}\right)}=43.19823 \ldots \Rightarrow N=44$	$N=44$ (Allow $N \geq 44$ but not $N>44$	A1 cso
	An incorrect inequality statement at any stage in a candidate’s working loses the final mark. Some candidates do not realise that the direction of the inequality is reversed in the final line of their solution. BUT it is possible to gain full marks for using $=$, as long as no incorrect working seen.		
			[4]
			Total 8
	Trial \& Improvement Method in (c):		
	$1^{\text {st }} \mathrm{M} 1$: Attempts $160-S_{N}$ or S_{N} with at least one value for $N>40$		
	$2^{\text {nd }}$ M1: Attempts $160-S_{N}$ or S_{N} with $N=43$ or $N=44$		
	$3^{\text {rd }}$ M1: For evidence of examining $160-S_{N}$ or S_{N} for both $N=43$ and $N=44$ with both values correct to 2 DP Eg: $160-S_{43}=$ awrt 0.51 and $160-S_{44}=$ awrt 0.45 or $S_{43}=\operatorname{awrt159.49}$ and $S_{44}=$ awrt159.55		
	A1: $N=44$ cso		
	Answer of $N=44$ only with no working scores no marks		

www.igexams.com

Question Number	Scheme		Marks
7.	(i) $9 \sin \left(\theta+60^{\circ}\right)=4 ; 0 \leq \theta<360^{\circ}$ (ii) $2 \tan x-3 \sin x=0 ;-\pi \leq x<\pi$		
(i)	$\begin{gathered} \sin \left(\theta+60^{\circ}\right)=\frac{4}{9} \text {, so }\left(\theta+60^{\circ}\right)=26.3877 \ldots \\ (\alpha=26.3877 \ldots) \end{gathered}$	Sight of $\sin ^{-1}\left(\frac{4}{9}\right)$ or awrt 26.4° or $0.461^{\text {c }}$ Can also be implied for $\theta=$ awrt -33.6 (i.e. 26.4-60)	M1
	So, $\theta+60^{\circ}=\{153.6122 \ldots, 386.3877 \ldots\}$	$\theta+60^{\circ}=\text { either " } 180-\text { their } \alpha \text { " or }$ " $360^{\circ}+$ their α " and not for $\boldsymbol{\theta}=$ either "180 - their α " or " $360^{\circ}+$ their α ". This can be implied by later working. The candidate's α could also be in radians but do not allow mixing of degrees and radians.	M1
	and $\theta=\{93.6122 \ldots, 326.3877 \ldots\}$	A1: At least one of awrt 93.6° or awrt 326.4°	A1 A1
		A1: Both awrt 93.6° and awrt 326.4 ${ }^{\circ}$	
	Both answers are cso and must come from correct work		
	Ignore extra solutions outside the range. In an otherwise fully correct solution deduct the final A1for any extra solutions in range		
			[4]
(ii)	$2\left(\frac{\sin x}{\cos x}\right)-3 \sin x=0$	Applies $\tan x=\frac{\sin x}{\cos x}$	M1
	Note: Applies $\tan x=\frac{\sin x}{\cos x}$ can be implied by $2 \tan x-3 \sin x=0 \Rightarrow \tan x(2-3 \cos x)$		
	$2 \sin x-3 \sin x \cos x=0$		
	$\sin x(2-3 \cos x)=0$		
	$\cos x=\frac{2}{3}$	$\cos x=\frac{2}{3}$	A1
	$x=\operatorname{awrt}\{0.84,-0.84\}$	A1: One of either awrt 0.84 or awrt -0.84	A1A1ft
		A1ft: You can apply ft for $x= \pm \alpha$, where $\alpha=\cos ^{-1} k$ and $-1 \leq k \leq 1$	
	In this part of the solution, if there are any extra answers in range in an otherwise correct solution withhold the A1ft.		
	$\{\sin x=0 \Rightarrow\} x=0$ and $-\pi$	Both $x=0$ and $-\pi$ or awrt -3.14 from $\sin x=0$ In this part of the solution, ignore extra solutions in range.	B1
	Note solutions are: $x=\{-3.1415 . . .,-0.8410 . . ., 0,0.8410 \ldots\}$ Ignore extra solutions outside the range		
	Allow the use of θ in place of x in (ii)		
			[5]
			Total 9

www.igexams.com

www.igexams.com

Question Number	Scheme		Marks
9. (a)	Mark (a) and (b) together		

www.igexams.com

Question Number	Scheme		Marks
10. (a)	$\frac{1}{2}(9 x+6 x) 4 x$ or $2 x \times 15 x$ or $\left(\frac{1}{2} 4 x \times(9 x-6 x)+6 x \times 4 x\right)$ or $6 x^{2}+24 x^{2}$ or $\left(9 x \times 4 x-\frac{1}{2} 4 x \times(9 x-6 x)\right)$ or $36 x^{2}-6 x^{2}$	M1: Correct attempt at the area of a trapezium. Note that $30 x^{2}$ on its own or $30 x^{2}$ from incorrect work e.g. $5 x \times 6 x$ is M0. If there is a clear intention to find the area of the trapezium correctly allow the M1 but the A1 can be withheld if there are any slips.	M1A1cso
	$\Rightarrow 30 x^{2} y=9600 \Rightarrow y=\frac{9600}{30 x^{2}} \Rightarrow y=\frac{320}{x^{2}} *$	A1: Correct proof with at least one intermediate step and no errors seen. " $y="$ is required.	
			[2]
(b)	$(S=) \frac{1}{2}(9 x+6 x) 4 x+\frac{1}{2}(9 x+6 x) 4 x+6 x y+9 x y+5 x y+4 x y$		M1A1
	M1: An attempt to find the area of six faces of the prism. The 2 trapezia may be combined as $(9 x+6 x) 4 x$ or $60 x^{2}$ and the 4 other faces may be combined as $24 x y$ but all six faces must be included. There must be attempt at the areas of two trapezia that are dimensionally correct. A1: Correct expression in any form. Allow just $(S=) 60 x^{2}+24 x y$ for M1A1		
	$y=\frac{320}{x^{2}} \Rightarrow(S=) 30 x^{2}+30 x^{2}+24 x\left(\frac{320}{x^{2}}\right)$		M1
	Substitutes $y=\frac{320}{x^{2}}$ into their expression for S (may be done earlier). S should have at least one x^{2} term and one $x y$ term but there may be other terms which may be dimensionally incorrect.		
	So, $(S=) 60 x^{2}+\frac{7680}{x}$ *	Correct solution only. " $S=$ " is not required here.	A1* cso
			[4]

www.igexams.com

www.igexams.com

10(d)	$\begin{aligned} \frac{\mathrm{d}^{2} S}{\mathrm{dx} x^{2}} & =120+\frac{15360}{x^{3}}>0 \\ & \Rightarrow \text { Minimum } \end{aligned}$	M1: Attempt $S^{\prime \prime}\left(x^{n} \rightarrow x^{n-1}\right)$ and considers sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve $S^{\prime \prime}=0$ is M0 A1: $120+\frac{15360}{x^{3}}$ and >0 and conclusion. Requires a correct second derivative of $120+\frac{15360}{x^{3}}$ (need not be simplified) and a valid reason (e.g. >0), and conclusion. Only follow through a correct second derivative i.e. x may be incorrect but must be positive and/or $S^{\prime \prime}$ may have been evaluated incorrectly.	M1A1ft
	A correct $S^{\prime \prime}$ followed by $S^{\prime \prime}(" 4 ")=" 360$ " therefore minimum would score no marks in (d)A correct $S^{\prime \prime}$ followed by $S^{\prime \prime}(" 4 ")=" 360 "$ which is positive therefore minimum would scoreboth marks		
			[2]
	Note parts (c) and (d) can be marked together.		
			Total 14

www.igexams.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2J E

