

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Core Mathematics C2 (6664/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code UA041196 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2}+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

May 2015 6664 Core Mathematics C2 Mark Scheme

Question Number	Scheme	Marks
1.	$\left(2-\frac{x}{4}\right)^{10}$	
Way 1	$2^{10} + \begin{pmatrix} 10 \\ 1 \end{pmatrix} 2^9 \begin{pmatrix} -\frac{1}{4} \\ x \end{pmatrix} + \begin{pmatrix} 10 \\ 2 \end{pmatrix} 2^8 \begin{pmatrix} -\frac{1}{4} \\ x \end{pmatrix}^2 = + \dots$ For <u>either</u> the <i>x</i> term <u>or</u> the <i>x</i> ² term including a correct <u>binomial coefficient</u> with a <u>correct power of x</u>	M1
	First term of 1024	B1
	Either $-1280x$ or $720x^2$ (Allow +-1280x here) = $1024 - 1280x + 720x^2$	A1
	Both $-1280x$ and $720x^2$ (Do not allow +-1280x here)	A1 [4]
Way 2	$\left(2 - \frac{x}{4}\right)^{10} = 2^k \left(1 - \underbrace{\underline{10}}_{\underline{\underline{10}}} \times \frac{\underline{x}}{\underline{\underline{8}}} + \underbrace{\underline{10} \times 9}_{\underline{\underline{2}}} \left(-\frac{\underline{x}}{\underline{\underline{8}}}\right)^2_{\underline{\underline{2}}}\right)$	M1
	1024(1±)	
	$= 1024 - 1280x + 720x^2$	<u>B1</u> A1 A1 [4]
	Notes	[7]
correct p coefficie B1: Award th A1: For one Allow 72 A1: For both Allow ter N.B. If t	er the x term <u>or</u> the x^2 term having correct structure i.e. a <u>correct</u> binomial coefficient in any for <u>ower of x</u> . Condone sign errors and condone missing brackets and allow alternative forms for binom nts e.g. ${}^{10}C_1$ or $\binom{10}{1}$ or even $\binom{10}{1}$ or 10. The powers of 2 or of ¹ / ₄ may be wrong or missing his for 1024 when first seen as a distinct constant term (not $1024x^0$) and not $1 + 1024$ correct term in x with coefficient simplified. Either $-1280x$ or $720x^2$ (allow $+-1280x$ here) $20x^2$ to come from $\left(\frac{x}{4}\right)^2$ with no negative sign. So use of $+$ sign throughout could give M1 a correct simplified terms i.e. $-1280x$ and $720x^2$ (Do not allow $+-1280x$ here) rms to be listed for full marks e.g. 1024 , $-1280x$, $+720x^2$ they follow a correct answer by a factor such as $512-640x + 360x^2$ then isw may be listed. Ignore any extra terms.	nial ng.
	Notes for Way 2	
	tructure for at least one of the underlined terms. i.e. a <u>correct</u> binomial coefficient in any form with <u><i>x</i></u> . Condone sign errors and condone missing brackets and allow alternative forms for binomial coefficients.	
e.g. ${}^{10}C_1$	or $\binom{10}{1}$ or even $\binom{10}{1}$ or 10. <i>k</i> may even be 0 or 2 ^{<i>k</i>} may not be seen. Just consider the brack	
this mar B1: Needs 10	k. 24(1 To become 1024	

A1, A1: as before

Question Number	Sch	neme	Marks
	Way 1	Way 2	
2 (a)	$(x m2)^{2} + (y \pm 1)^{2} = k, k > 0$	$x^2 + y^2 m4x \pm 2y + c = 0$	M1
	Attempts to use $r^2 = (4-2)^2 + (-5+1)^2$	$4^{2} + (-5)^{2} - 4 \times 4 + 2 \times -5 + c = 0$	M1
	Obtains $(x-2)^2 + (y+1)^2 = 20$	$x^2 + y^2 - 4x + 2y - 15 = 0$	A1 (3)
	N.B. Special case: $(x-2)^2 - (y+1)^2 = 20$ is	not a circle equation but earns M0M1A0	
(b) Way 1	Gradient of radius from centre to $(4, -5) = -2$	(must be correct)	B1
v	Tangent gradient = $-\frac{1}{\text{their numerical gradient}}$	ent of radius	M1
	Equation of tangent is $(y+5) = \frac{1}{2}(x-4)$		M1
		4 = 0 or other integer multiples of this answer)	A1
			(4)
b)Way 2	Quotes $xx' + yy' - 2(x + x') + (y + y') - 15 =$	$= 0$ and substitutes (4, -5)_	B1
	4x - 5y - 2(x+4) + (y-5) - 15 = 0 so 2x - 3y - 2(x+4) + (y-5) - 15 = 0 so 2x - 3y - 2(x+4) + (y-5) - 15 = 0 so 2x - 3y - 2(x+4) + (y-5) - 15 = 0 so 2x - 3y - 3	4y - 28 = 0 (or alternatives as in Way 1)	M1,M1A1 (4)
b)Way 3	Use differentiation to find expression for grad	dient of circle	
	Either $2(x-2) + 2(y+1)\frac{dy}{dx} = 0$ or states $y =$	$-1 - \sqrt{20 - (x-2)^2}$ so $\frac{dy}{dx} = \frac{(x-2)}{\sqrt{20 - (x-2)^2}}$	B1
	Substitute $x = 4$, $y = -5$ after valid differentiation	ion to give gradient =	M1
	Then as Way 1 above $(y+5) = \frac{1}{2}(x-4)$ so	x - 2y - 14 = 0	M1 A1 (4)
			[7]
()) ()	N es centre to write down equation of circle in one of t	otes	

M1: Attempts distance between two points to establish r^2 (independent of first M1)- allow one sign slip only using distance formula with -5 or -1, usually (-5 - 1) in 2nd bracket. Must not identify this distance as diameter.

This mark may alternatively (e.g. way 2)be given for substituting (4, -5) into a **correct circle** equation with one unknown Can be awarded for $r = \sqrt{20}$ or for $r^2 = 20$ stated or implied but not for $r^2 = \sqrt{20}$ or r = 20 or $r = \sqrt{5}$

A1: Either of the answers printed or correct equivalent e.g. $(x-2)^2 + (y+1)^2 = (2\sqrt{5})^2$ is A1 but $2\sqrt{5}^2$ (no bracket) is A0 unless there is recovery

Also $(x-2)^2 + (y-(-1))^2 = (2\sqrt{5})^2$ may be awarded M1M1A1as a correct equivalent.

N.B. $(x-2)^2 + (y+1)^2 = 40$ commonly arises from one sign error evaluating r and earns M1M1A0 (b) Way 1:

B1: Must be correct answer -2 if evaluated (otherwise may be implied by the following work)

M1: Uses negative reciprocal of their gradient

M1: Uses $y - y_1 = m(x - x_1)$ with (4,-5) and their **changed** gradient **or** uses y = mx + c and (4, -5) with their changed gradient (not gradient of radius) to find c

A1: answers in scheme or multiples of these answers (must have "= 0"). NB Allow 1x - 2y - 14 = 0

N.B. $(y+5) = \frac{1}{2}(x-4)$ following gradient of is $\frac{1}{2}$ after errors leads to x - 2y - 14 = 0 but is worth B0M0M0A0 Way 2: Alternative method (b) is rare.

Way 3: Some may use implicit differentiation to differentiate- others may attempt to make *y* the subject and use chain rule **B1: the differentiation** must be accurate and the algebra accurate too. Need to take (-) root not (+)root in the alternative **M1:** Substitutes into their gradient function but must follow valid accurate differentiation

M1: Must use "their" tangent gradient and y+5 = m(x-4) but allow over simplified attempts at differentiation for this mark. A1: As in Way 1

Question	Scheme	Marks
Number 3.	$f(x) = 6x^3 + 3x^2 + Ax + B$	
Way 1 (a)	Attempting $f(1) = 45$ or $f(-1) = 45$	M1
	$f(-1) = -6 + 3 - A + B = 45$ or $-3 - A + B = 45 \implies B - A = 48 * (allow 48 = B - A)$	A1 * cso (2)
Way 1 (b)	Attempting $f(-\frac{1}{2}) = 0$	M1
	$6\left(-\frac{1}{2}\right)^3 + 3\left(-\frac{1}{2}\right)^2 + A\left(-\frac{1}{2}\right) + B = 0 \text{ or } -\frac{1}{2}A + B = 0 \text{ or } A = 2B$	A1 o.e.
	Solve to obtain $B = -48$ and $A = -96$	M1 A1 (4)
Way 2 (a)	Long Division	M1
	$(6x^3 + 3x^2 + Ax + B) \div (x \pm 1) = 6x^2 + px + q$ and sets remainder = 45	
Way 2 (b)	Quotient is $6x^2 - 3x + (A+3)$ and remainder is $B - A - 3 = 45$ so $B - A = 48$ *	A1*
Way 2 (b)	$(6x^3 + 3x^2 + Ax + B) \div (2x+1) = 3x^2 + px + q$ and sets remainder = 0	M1
	Quotient is $3x^2 + \frac{A}{2}$ and remainder is $B - \frac{A}{2} = 0$	A1
	Then Solve to obtain $B = -48$ and $A = -96$ as in scheme above (Way 1)	M1 A1
(c)	Obtain $(3x^2 - 48), (x^2 - 16), (6x^2 - 96), (3x^2 + \frac{A}{2}), (3x^2 + B), (x^2 + \frac{A}{6}) \text{ or } (x^2 + \frac{B}{3})$ as	B1ft
	factor or as quotient after division by $(2x + 1)$. Division by $(x+4)$ or $(x-4)$ see below	
	Factorises $(3x^2 - 48), (x^2 - 16), (48 - 3x^2), (16 - x^2) \text{ or } (6x^2 - 96)$	M1
	= 3 (2x + 1)(x + 4)(x - 4) (if this answer follows from a wrong A or B then award A0) isw if they go on to solve to give $x = 4$, -4 and -1/2	A1cso (3) [9]
	Notes	
	M1: 1 or -1 substituted into $f(x)$ and expression put equal to ± 45 A1*: Answer is given. Must have substituted -1 and put expression equal to ± 45 .	
	Correct equation with powers of -1 evaluated and conclusion with no errors seen.	
-	M1 : Long division as far as a remainder which is set equal to ± 45	
	A1*: See correct quotient and correct remainder and printed answer obtained with no errors M1: Must see $f(-\frac{1}{2})$ and "= 0" unless subsequent work implies this.	
	A1: Give credit for a correct equation even unsimplified when first seen, then isw.	
	A correct equation implies M1A1.	11
	M1: Attempts to solve the given equation from part (a) and their simplified or unsimplified o	
	algebra need not be correct for this mark). May just write down the correct answers.	
Way 2.	A1: Both A and B correct M1: Long division as far as a remainder which is set equal to 0	
Way 2.	A1: See correct quotient and correct remainder put equal to 0	
	M1A1: As in Way 1	
	hay be a mixture of Way 1 for (a) and Way 2 for (b) or vice versa. be written straight down or from long division, inspection, comparing coefficients or pairi	ng terms
-	id attempt to factorise a listed quadratic (see general notes) so $(3x-16)(x+3)$ could get N	-
A1cso: (0	Cannot be awarded if A or B is wrong) Needs the answer in the scheme or $-3(2x+1)(4+x)(4)$	-x) or
	Equivalent but factor 3 must be shown and there must be all the terms together with brackets A minority might divide by $(x-4)$ or $(x+4)$ obtaining $(6x^2+27x+12)$ or $(6x^2-21x-12)$	
	hey then need to factorise $(6x^2 + 27x + 12)$ or $(6x^2 - 21x - 12)$ for M1	101 21
	en A1cso as before	
Special case	s:	
But if they g	down $f(x) = 3 (2x+1)(x+4)(x-4)$ with no working, this is B1 M1 A1 give $f(x) = (2x+1)(x+4)(x-4)$ with no working (from calculator?) give B1M0A0 (2x+1)(3x+12)(x-4) or $f(x) = (6x+3)(x+4)(x-4)$ or $f(x) = (2x+1)(x+4)(3x-12)$ is	s B1M1A0

Question Number	Scheme	Ma	rks
4.(a)	In triangle <i>OCD</i> complete method used to find angle <i>COD</i> so:		
	Either $\cos C \Theta D = \frac{8^2 + 8^2 - 7^2}{2 \times 8 \times 8}$ or uses $\angle COD = 2 \times \arcsin \frac{3.5}{8}$ or $\angle COD =$	M1	
	$(\angle COD = 0.9056(331894)) = 0.906(3sf) *$ accept awrt 0.906	A1 *	(2
(b)	Uses $s = 8\theta$ for any θ in radians or $\frac{\theta}{360} \times 2\pi \times 8$ for any θ in degrees	M1	
	$\theta = \frac{\pi - "COD"}{2} (= awrt \ 1.12) \text{ or } 2\theta (= awrt \ 2.24) \text{ and Perimeter} = 23 + (16 \times \theta)$	M1	
	accept awrt 40.9 (cm)	A1	(3)
(c)	Either Way 1: (Use of Area of two sectors + area of triangle) Area of triangle = $\frac{1}{2} \times 8 \times 8 \times \sin 0.906$ (or 25.1781155 accept awrt 25.2)or		
	$\frac{1}{2} \times 8 \times 7 \times \sin 1.118$ or $\frac{1}{2} \times 7 \times h$ after <i>h</i> calculated from correct Pythagoras or trig.	M1	
	Area of sector = $\frac{1}{2}8^2 \times "1.117979732"$ (or 35.77535142 accept awrt 35.8)	M1	
	Total Area = Area of two sectors + area of triangle = awrt 96.7 or 96.8 or 96.9 (cm^2)	A1	(3
	Or Way 2: (Use of area of semicircle – area of segment)		
	Area of semi-circle = $\frac{1}{2} \times \pi \times 8 \times 8$ (or 100.5)	M1	
	Area of segment = $\frac{1}{2}8^2 \times ("0.906" - \sin"0.906")$ (or 3.807)	M1	
	So area required = awrt 96.7 or 96.8 or 96.9 (cm^2)	A1	(3 [8
	Notes		10
Or s and Mus A1*: (NI state does	her use correctly quoted cosine rule – may quote as $7^2 = 8^2 + 8^2 - 2 \times 8 \times 8 \cos \alpha \Rightarrow \alpha =$ split isosceles triangle into two right angled triangles and use arcsin or longer methods using Pythagoras arcos (i.e. $\pi - 2 \times \arccos \frac{3.5}{8}$). There are many ways of showing this result. t conclude that $\angle COD =$ B this is a given answer) If any errors or over-approximation is seen this is A0. It needs correct work lea ed answer of 0.906 or awrt 0.906 for A1. The cosine of <i>COD</i> is equal to 79/128 or awrt 0.617. Use of not lead to printed answer. They may give 51.9 in degrees then convert to radians. This is fine. minimal solution $7^2 = 8^2 + 8^2 - 2 \times 8 \times 8 \cos \alpha \Rightarrow \alpha = 0.906$ (with no errors seen) can have M1A1 but	ading to 0.62 (2)	sf)
	ranging result in M1A0 es formula for arc length with $r = 8$ and any angle i.e. $s = 8\theta$ if working in rads or $s = \frac{\theta}{360} \times 2\pi \times 8$ in	degrees	
(If t M1: Use Peri	the formula is quoted with r the 8 may be implied by the value of their $r\theta$) es angles on straight line (or other geometry) to find angle BOC or AOD and uses imeter = 23 + arc lengths BC and AD (may make a slip – in calculation or miscopying) rect work leading to awrt 40.9 not 40.8 (do not need to see cm) This answer implies M1M1A1		
(c) Way 1:	M1 : Mark is given for correct statement of area of triangle $\frac{1}{2} \times 8 \times 8 \times \sin 0.906$ (must use correct		
angle) o	or for correct answer (awrt 25.2) Accept alternative correct methods using Pythagoras and ½ base×height	nt	
M1 : Ma	rk is given for formula for area of sector $\frac{1}{2}8^2 \times "1.117979732"$ with $r = 8$ and their angle BOC or AOD	or	
(<i>BOC</i> + .	AOD) not COD. May use $A = \frac{\theta}{360} \times \pi \times 8^2$ if working in degrees		

³⁶⁰ A1: Correct work leading to awrt 96.7, 96.8 or 96.9 (This answer implies M1M1A1)

NB. Solution may combine the two sectors for part (b) and (c) and so might use $2 \times \angle BOC$ rather than $\angle BOC$

Way 2: M1: Mark is given for correct statement of area of semicircle $\frac{1}{2} \times \pi \times 8 \times 8$ or for correct answer 100.5

M1: Mark is given for formula for area of segment $\frac{1}{2}8^2 \times ("0.906" - \sin"0.906")$ with r = 8 or 3.81 A1: As in Way 1

	Scheme	Marks
Number 5.(i)	Mark (a) and (b) together	
(a)	$a + ar = 34$ or $\frac{a(1-r^2)}{(1-r)} = 34$ or $\frac{a(r^2-1)}{(r-1)} = 34$; $\frac{a}{1-r} = 162$	B1; B1
(Way 1)	Eliminate <i>a</i> to give $(1+r)(1-r) = \frac{17}{81}$ or $1-r^2 = \frac{34}{162}$ (not a cubic)	aM1
	(and so $r^2 = \frac{64}{81}$ and) $r = \frac{8}{9}$ only	aA1
(b)	Substitute their $r = \frac{8}{9}$ (0 < r < 1) to give $a =$	(4) bM1
	a = 18	bA1
(Way 2)	24	(2)
Part (b) first	Eliminate <i>r</i> to give $\frac{34-a}{a} = 1 - \frac{a}{162}$	bM1
	gives $a = 18$ or 306 and rejects 306 to give $a = 18$	bA1
Then part (a) again	Substitute $a = 18$ to give $r =$	aM1
	$r=\frac{8}{9}$	aA1
(ii)	$\frac{42(1-\frac{6}{7}^n)}{1-\frac{6}{7}} > 290$ (For trial and improvement approach see notes below)	M1
	to obtain So $(\frac{6}{7})^n < (\frac{4}{294})$ or equivalent e.g. $(\frac{7}{6})^n > (\frac{294}{4})$ or $(\frac{6}{7})^n < (\frac{2}{147})$	A1
	So $n > \frac{\log'(\frac{4}{294})''}{\log(\frac{6}{7})}$ or $\log_{\frac{6}{7}}''(\frac{4}{294})''$ or equivalent but must be log of positive quantity	M1
	(i.e. $n > 27.9$) so $n = 28$	A1 (4)
	Notes	(-)
В	1 : Writes a correct equation connecting a and r and 34 (allow equivalent equations – may be implied) 1 : Writes a correct equation connecting a and r and 162 (allow equivalent equation – may be implied)	
Way 1: al	M1 : Eliminates <i>a</i> correctly for these two equations to give $(1+r)(1-r) = \frac{17}{81}$ or $(1+r)(1-r) = \frac{34}{162}$ or eq	uivalent –
aA	not a cubic – should have factorized $(1 - r)$ to give a correct quadratic A1: Correct value for <i>r</i> . Accept 0.8 recurring or 8/9 (not 0.889) Must only have positive value.	
bA	M1 : Substitutes their $r (0 < r < 1)$ into a correct formula to give value for <i>a</i> . Can be implied by $a = 18$ A1 : must be 18 (not answers which round to 18) nds <i>a</i> first - B1 , B1 : As before then award the (b) M and A marks before the (a) M and A marks	
-	11: Eliminates r correctly to give $\frac{34-a}{a} = 1 - \frac{a}{162}$ or $a^2 - 324a + 5508 = 0$ or equivalent	
	1: Correct value for a so $a = 18$ only. (Only award after 306 has been rejected)	
	1 : Substitutes their 18 to give $r =$	
	r = -0000	
aA	1: $r = \frac{8}{9}$ only Allow $n \text{ or } n = 1$ and any symbols from ">" "<" or "=" atc. A1 · Must be power n (not $n = 1$) with any	symbol
aA (ii) M1:	Allow <i>n</i> or $n - 1$ and any symbols from ">", "<", or "=" etc A1 : Must be power n (not $n - 1$) with any	symbol
aA) (ii) M1: M1: U	Allow <i>n</i> or $n - 1$ and any symbols from ">", "<", or "=" etc A1 : Must be power <i>n</i> (not $n - 1$) with any uses logs correctly on $\left(\frac{6}{7}\right)^n$ or $\left(\frac{7}{6}\right)^n$ not on (36) ^{<i>n</i>} to get as far as <i>n</i> Allow any symbol	
aA (ii) M1: M1: U A1: n	Allow <i>n</i> or <i>n</i> – 1 and any symbols from ">", "<", or "=" etc A1 : Must be power <i>n</i> (not <i>n</i> – 1) with any less logs correctly on $\left(\frac{6}{7}\right)^n$ or $\left(\frac{7}{6}\right)^n$ not on (36) ^{<i>n</i>} to get as far as <i>n</i> Allow any symbol = 28 cso (any errors with inequalities earlier e.g. failure to reverse the inequality when dividing by the neg	ative
aA (ii) M1: M1: U A1: n lo	Allow <i>n</i> or $n - 1$ and any symbols from ">", "<", or "=" etc A1 : Must be power <i>n</i> (not $n - 1$) with any uses logs correctly on $(\frac{6}{7})^n$ or $(\frac{7}{6})^n$ not on $(36)^n$ to get as far as <i>n</i> Allow any symbol = 28 cso (any errors with inequalities earlier e.g. failure to reverse the inequality when dividing by the neg $\log(\frac{6}{7})$ or any contradictory statements must be penalised here) Those with equals throughout may gain this	ative
aA (ii) M1: M1: U A1: n lo fo Special ca - n = 28	Allow <i>n</i> or <i>n</i> – 1 and any symbols from ">", "<", or "=" etc A1 : Must be power <i>n</i> (not <i>n</i> – 1) with any less logs correctly on $\left(\frac{6}{7}\right)^n$ or $\left(\frac{7}{6}\right)^n$ not on (36) ^{<i>n</i>} to get as far as <i>n</i> Allow any symbol = 28 cso (any errors with inequalities earlier e.g. failure to reverse the inequality when dividing by the neg	ative mark if they

Question Number	Scheme	Marks
1 (unito et	May mark (a) and (b) together	
6. (a)	Expands to give $10x^{\frac{3}{2}} - 20x$	B1
	Integrates to give $\frac{10}{\frac{5}{2}} x^{\frac{5}{2}} + \frac{-20^{2} x^{2}}{2} (+c)$	M1 A1ft
	Simplifies to $4x^{\frac{5}{2}} - 10x^2(+c)$	A1cao
(b)	Use limits 0 and 4 either way round on their integrated function (may only see 4 substituted)	M1
	Use limits 4 and 9 either way round on their integrated function	dM1
	Obtains either ± -32 or ± 194 needs at least one of the previous M marks for this to be awarded	A1
	(So area = $\left \int_{0}^{4} y dx \right + \int_{4}^{9} y dx$) i.e. 32 + 194, = 226	ddM1,A (5 [9
	Notes	
A1: Co A1: Mu (b) M1: (d I dM1: (d A1: At or I of ddM1: . las A1cao:	$\frac{1}{2} \rightarrow \frac{x^{\frac{1}{2}}}{\frac{5}{2}}$ or $x^{\frac{1}{2}} \rightarrow \frac{x^{\frac{1}{2}}}{\frac{3}{2}}$ or $x^{\frac{1}{2}} \rightarrow \frac{x^{\frac{1}{2}}}{\frac{7}{2}}$ and/or $x \rightarrow \frac{x^2}{2}$. rrect unsimplified follow through for both terms of their integration. Does not need (+ c) us the simplified and correct– allow answer in scheme or $4x^{2\frac{1}{2}} - 10x^2$. Does not need (+ c) oes not depend on first method mark) Attempt to substitute 4 into their integral (however obtained must not be differentiated) or seeing their evaluated number (usually 32) is enough – do not need minus zero. depends on first method mark in (a)) Attempt to subtract either way round using the limits 4 and $A \times 9^{\frac{5}{2}} - B \times 9^2$ with $A \times 4^{\frac{5}{2}} - B \times 4^2$ is enough – or seeing $162 - (-32)$ {but not $162 - 32$ } least one of the values (32 and 194) correct (needs just one of the two previous M marks in (b)) may see $162 + 32 + 32$ or $162 + 64$ or may be implied by correct final answer if not evaluated un working Adds 32 and 194 (may see $162 + 32 + 32$ or may be implied by correct final answer if not evaluated st line of working). This depends on everything being correct to this point. Final answer of 226 not (- 226)	l to see 9 ntil last line nted until
194 seen a Uses corre	errors: $4 \times 4^{\frac{5}{2}} - 10 \times 4^{2} + 4 \times 9^{\frac{5}{2}} - 10 \times 9^{2} - 4 \times 4^{\frac{5}{2}} - 10 \times 4^{2} = \pm 162$ obtains M1 M1 A0 (neither nd final answer incorrect) then M0 A0 so 2/5 ect limits to obtain -32 +162 +32 = +/-162 is M1 M1 A1 (32 seen) M0 A0 so 3/5	32 nor
.	se: In part (b) Uses limits 9 and $0 = 972 - 810 - 0 = 162$ M0 M1 A0 M0A0 scores 1/5 applies if 4 never seen.	

Question Number	Sche	eme	Marks
	$8^{2x+1} = 24$		
	$(2x+1)\log 8 = \log 24$ or	or $8^{2x} = 3$ and so $(2x)\log 8 = \log 3$ or	
7. (i)	$(2x+1) = \log_8 24$	$(2x) = \log_8 3$	M1
	$x = \frac{1}{2} \left(\frac{\log 24}{\log 8} - 1 \right) \text{ or } x = \frac{1}{2} \left(\log_8 24 - 1 \right)$	$x = \frac{1}{2} \left(\frac{\log 3}{\log 8} \right)$ or $x = \frac{1}{2} \left(\log_8 3 \right)$ o.e.	dM1
	=0.264		A1 (3)
	$\log_2(11y - 3) - \log_2 3 - 2\log_2 y = 1$		
(ii)	$\log_2(11y - 3) - \log_2 3 - \log_2 y^2 = 1$		M1
	$\log_2 \frac{(11y-3)}{3y^2} = 1$ or $\log_2 \frac{(11y-3)}{y^2}$	$\frac{3}{2} = 1 + \log_2 3 = 2.58496501$	dM1
	$\log_2 \frac{(11y-3)}{3y^2} = \log_2 2 \text{ or } \log_2 \frac{(11y-3)}{y^2}$	$=\log_2 6$ (allow awrt 6 if replaced by 6 later)	B1
	Obtains $6y^2 - 11y + 3 = 0$ o.e. i.e. $6y^2 = 112$	y-3 for example	A1
	Solves quadratic to give $y =$		ddM1
	$y = \frac{1}{3}$ and $\frac{3}{2}$ (need both- one should not be re	ejected)	A1
	5 2		(6) [9]
Notes (i)	M1: Takes logs and uses law of powers correc dM1: Make x subject of their formula correctly calculate e.g. $(1.528 - 1)/2$) A1: Allow answers which round to 0.264		
(ii)	M1: Applies power law of logarithms replacing	ng $2\log_2 y$ by $\log_2 y^2$	
	dM1 : Applies quotient or product law of logar y^2 . (dependent on first M mark) or applies quot "triple" fractions) $1 + \log_2 3$ on RHS is not su	ithms correctly to the three log terms including tient rule to two terms and collects constants (a	
	e.g. $\log_2(11y - 3) = \log_2 3 + \log_2 y^2 + \log_2 y^2$		
	B1 : States or uses $\log_2 2 = 1$ or $2^1 = 2$ at any		
	$\log_2(11y - 3) - \log_2 3 - 2\log_2 y = \log_2 2 \cos^2 y$	or for $\frac{(11y-3)}{3y^2} = 2$, for example (Sometime	s this
	mark will be awarded before the second M ma		cases)
	Or may be given for $\log_2 6 = 2.584962501$	or $2^{2.584962501} = 6$	
	A1: This or equivalent quadratic equation (doe ddM1: (dependent on the two previous M mar log work using factorising, completion of squa A1: Any equivalent correct form – need both a *NB: If "=0" is missing from the equation but answers then allow the penultimate A1 to be in	es not need to be in this form but should be equ ks) Solves their quadratic equation following r re, formula or implied by both answers correct answers- allow awrt 0.333 for the answer 1/3 candidate continues correctly and obtains corre	easonable
	throughout)		2

Question		1	
Number		heme	Marks
		Or Way 2: Squares both sides, uses	
8. (i)	•	$\cos^2 3\theta + \sin^2 3\theta = 1$, obtains	M1
	$(3\theta) = \frac{\pi}{3}$	$\cos 3\theta = \pm \frac{1}{2}$ or $\sin 3\theta = \pm \frac{\sqrt{3}}{2}$ so $(3\theta) = \frac{\pi}{3}$	
	Adds π or 2π to previous value of angle	e (to give $\frac{4\pi}{3}$ or $\frac{7\pi}{3}$)	M1
	So $\theta = \frac{\pi}{9}, \frac{4\pi}{9}, \frac{\pi}{9}$	$\frac{7\pi}{9}$ (all three, no extra in range)	A1 (3)
(ii)(a)	$4(1-\cos^2 x) + \cos x = 4-k$	Applies $\sin^2 x = 1 - \cos^2 x$	M1
	Attempts to solve $4\cos^2 x - \cos x - k = 0$	0, to give $\cos x =$	dM1
	$\cos x = \frac{1 \pm \sqrt{1 + 16k}}{8}$ or $\cos x = \frac{1}{8} \pm \sqrt{\frac{1}{64}}$	т т Т	A1 (3)
(b)	$\cos x = \frac{1 \pm \sqrt{49}}{8} = 1 \text{ and } -\frac{3}{4}$ (see the n	note below if errors are made)	M1
	Obtains two solutions from 0, 139, 221	(0 or 2.42 or 3.86 in radians)	dM1
	x = 0 and 139 and 221 (allow awrt 139 an	d 221) must be in degrees	A1 (3)
			(3) [9]
	N	otes	
(i) M1 : Ol	ptains $\frac{\pi}{3}$. Allow $x = \frac{\pi}{3}$ or even $\theta = \frac{\pi}{3}$. No	eed not see working here. May be implied by	$\theta = \frac{\pi}{2}$ in
	l answer (allow $(3\theta) = 1.05$ or $\theta = 0.349$	as decimals or $(3\theta) = 60$ or $\theta = 20$ as degree	/
Don	not allow $\tan 3\theta = -\sqrt{3}$ nor $\tan 3\theta = \pm \frac{1}{\sqrt{3}}$		
		r obtained. It is not dependent on the previous \overline{z}	
(Ma	y be implied by final answer of $\theta = \frac{4\pi}{9}$	or $\frac{7\pi}{9}$). This mark may also be given for an	swers as
	mals [4.19 or 7.33], or degrees (240 or 42		
	ed all three correct answers in terms of π a ree correct answers implies M1M1A1	and no extras in range.	
	$=20^{\circ}, 80^{\circ}, 140^{\circ}$ earns M1M1A0 and 0	.349, 1.40 and 2.44 earns M1M1A0	
(ii) (a) M1	: Applies $\sin^2 x = 1 - \cos^2 x$ (allow even if	brackets are missing e.g. $4 \times 1 - \cos^2 x$).	
	s must be awarded in (ii) (a) for an express		
	Uses formula or completion of square to obtextorisation attempt is M0) A1: cao - aware		
(b) M1 :	Either attempts to substitute $k = 3$ into the	eir answer to obtain two values for $\cos x$	
		sx (They cannot earn marks in ii(a) for this)	
		$= 1 - \cos^2 x$ (brackets may be missing) and co - see notes) The values for $\cos x$ may be >1 or	
	Obtains two correct values for <i>x</i>	see notes) the values for cost may be >1 0	< - 1
ansv	÷	(allow awrt 139 and 221) including 0. Ignore) Lose this mark for excess answers in the range	

Number	Scheme	Marks
9. (a)	Either: (Cost of polishing top and bottom (two circles) is $3 \times 2\pi r^2$ or (Cost of polishing curved surface area is) $2 \times 2\pi rh$ or both - just need to see at least one of these products	B1
	Uses volume to give $(h=)\frac{75\pi}{\pi r^2}$ or $(h=)\frac{75}{r^2}$ (simplified) (if V is misread – see below)	B1ft
	$(C) = 6\pi r^{2} + 4\pi r \left(\frac{75}{r^{2}}\right)$ Substitutes expression for <i>h</i> into area or cost expression of form $Ar^{2} + Brh$	M1
	$C = 6\pi r^2 + \frac{300\pi}{r} \qquad \qquad *$	A1* (4)
(b)	$\left\{\frac{\mathrm{d}C}{\mathrm{d}r}=\right\} 12\pi r - \frac{300\pi}{r^2} \text{or} 12\pi r - 300\pi r^{-2} \text{ (then isw)}$	M1 A1 ft
	$12\pi r - \frac{300\pi}{r^2} = 0$ so r^k = value where $k = \pm 2, \pm 3, \pm 4$	dM1
	Use cube root to obtain $r = \left(their \frac{300}{12}\right)^{\frac{1}{3}}$ (= 2.92)- allow $r = 3$, and thus $C =$	ddM1
	Then $C = $ awrt 483 or 484	A1cao (5
(c)	$\left\{\frac{\mathrm{d}^2 C}{\mathrm{d}r^2}\right\} = \frac{12\pi + \frac{600\pi}{r^3} > 0 \text{ so minimum}}{12\pi + \frac{600\pi}{r^3} > 0 \text{ so minimum}}$	B1ft (1
(-) D1 - C(Notes	[10
B1ft: 0 M1: Su A1*: H 6 T N.B. Can	ates $3 \times 2\pi r^2$ or states $2 \times 2\pi rh$ Obtains a correct expression for <i>h</i> in terms of <i>r</i> (ft only follows misread of <i>V</i>) abstitutes their expression for <i>h</i> into area or cost expression of form $Ar^2 + Brh$ Iad correct expression for <i>C</i> and achieves given answer in part (a) including " <i>C</i> =" or "Cost=" errors seen such as <i>C</i> = area expression without multiples of (£)3 and (£)2 at any point. Cost a nust be perfectly distinguished at all stages for this A mark. didates using Curved Surface Area = $\frac{2V}{r}$ - please send to review	' and no
B1ft: M1: Su A1*: H G N.B. Can (b) M1: At	ates $3 \times 2\pi r^2$ or states $2 \times 2\pi rh$ Obtains a correct expression for <i>h</i> in terms of <i>r</i> (ft only follows misread of <i>V</i>) abstitutes their expression for <i>h</i> into area or cost expression of form $Ar^2 + Brh$ Iad correct expression for <i>C</i> and achieves given answer in part (a) including " <i>C</i> =" or "Cost=" errors seen such as <i>C</i> = area expression without multiples of (£)3 and (£)2 at any point. Cost a nust be perfectly distinguished at all stages for this A mark. didates using Curved Surface Area = $\frac{2V}{r}$ - please send to review tempts to differentiate as evidenced by at least one term differentiated correctly	' and no and area
B1ft: (M1: Su A1*: H C N.B. Can (b) M1: At A1ft: (ates $3 \times 2\pi r^2$ or states $2 \times 2\pi rh$ Obtains a correct expression for <i>h</i> in terms of <i>r</i> (ft only follows misread of <i>V</i>) abstitutes their expression for <i>h</i> into area or cost expression of form $Ar^2 + Brh$ Iad correct expression for <i>C</i> and achieves given answer in part (a) including " <i>C</i> =" or "Cost=" errors seen such as <i>C</i> = area expression without multiples of (£)3 and (£)2 at any point. Cost a must be perfectly distinguished at all stages for this A mark. didates using Curved Surface Area = $\frac{2V}{r}$ - please send to review tempts to differentiate as evidenced by at least one term differentiated correctly Correct derivative – allow $12\pi r - 300\pi r^{-2}$ then isw if the power is misinterpreted (ft only for	' and no and area or misread)
B1ft: (M1: Su A1*: F G N.B. Can (b) M1: Au A1ft: (dM1: S	ates $3 \times 2\pi r^2$ or states $2 \times 2\pi rh$ Obtains a correct expression for <i>h</i> in terms of <i>r</i> (ft only follows misread of <i>V</i>) abstitutes their expression for <i>h</i> into area or cost expression of form $Ar^2 + Brh$ lad correct expression for <i>C</i> and achieves given answer in part (a) including " <i>C</i> =" or "Cost=" errors seen such as <i>C</i> = area expression without multiples of (£)3 and (£)2 at any point. Cost a nust be perfectly distinguished at all stages for this A mark. didates using Curved Surface Area = $\frac{2V}{r}$ - please send to review tempts to differentiate as evidenced by at least one term differentiated correctly Correct derivative – allow $12\pi r - 300\pi r^{-2}$ then isw if the power is misinterpreted (ft only for ets their $\frac{dC}{dr}$ to 0, and obtains r^k = value where $k = 2$, 3 or 4 (needs correct collection of power k = 2, 3 or 4 (needs correct collection of power)	' and no and area or misread)
B1ft: 0 M1: Su A1*: F G N.B. Can (b) M1: Au A1ft: C dM1: S from their ddM1:	ates $3 \times 2\pi r^2$ or states $2 \times 2\pi rh$ Obtains a correct expression for <i>h</i> in terms of <i>r</i> (ft only follows misread of <i>V</i>) abstitutes their expression for <i>h</i> into area or cost expression of form $Ar^2 + Brh$ Iad correct expression for <i>C</i> and achieves given answer in part (a) including " <i>C</i> =" or "Cost=" errors seen such as <i>C</i> = area expression without multiples of (£)3 and (£)2 at any point. Cost a must be perfectly distinguished at all stages for this A mark. didates using Curved Surface Area = $\frac{2V}{r}$ - please send to review tempts to differentiate as evidenced by at least one term differentiated correctly Correct derivative – allow $12\pi r - 300\pi r^{-2}$ then isw if the power is misinterpreted (ft only for	' and no and area or misread) wers of <i>r</i>
B1ft: 0 M1: Su A1*: F G N.B. Can (b) M1: An A1ft: 0 dM1: S From their ddM1: A	ates $3 \times 2\pi r^2$ or states $2 \times 2\pi rh$ Obtains a correct expression for <i>h</i> in terms of <i>r</i> (ft only follows misread of <i>V</i>) abstitutes their expression for <i>h</i> into area or cost expression of form $Ar^2 + Brh$ Iad correct expression for <i>C</i> and achieves given answer in part (a) including " <i>C</i> =" or "Cost=" errors seen such as <i>C</i> = area expression without multiples of (£)3 and (£)2 at any point. Cost a nust be perfectly distinguished at all stages for this A mark. didates using Curved Surface Area = $\frac{2V}{r}$ - please send to review tempts to differentiate as evidenced by at least one term differentiated correctly Correct derivative – allow $12\pi r - 300\pi r^{-2}$ then isw if the power is misinterpreted (ft only for ets their $\frac{dC}{dr}$ to 0, and obtains r^k = value where $k = 2$, 3 or 4 (needs correct collection of pow original derivative expression – allow errors dividing by 12π) Uses cube root to find <i>r</i> or see $r = awrt 3$ as evidence of cube root and substitutes into correct expression for <i>C</i> to obtain value for <i>C</i>	' and no and area or misread) wers of <i>r</i>

N..B. Some candidates have **misread** the volume as 75 instead of 75π . PTO for marking instruction.

Following this misread candidates cannot legitimately obtain the printed answer in part (a). Either they obtain $C = 6\pi r^2 + \frac{300}{r}$ or they "fudge" their working to appear to give the printed answer. The policy for a misread is to subtract 2 marks from A or B marks. In this case the A mark is to be subtracted from part (a) and the final A mark is to be subtracted from part (b) The maximum mark for part (a) following this misread is 3 marks. The award is B1 B1 M1 A0 as a maximum. (a) B1: as before B1: Uses volume to give $(h =) \frac{75}{-2}$ M1: (C) = $6\pi r^2 + 4\pi r \left(\frac{75}{\pi r^2}\right)$ A0: Printed answer is not obtained without error Most Candidates may then adopt the printed answer and gain up to full marks for the rest of the question so 9 of the 10 marks maximum in all. _____ Any candidate who proceeds with **their** answer $C = 6\pi r^2 + \frac{300}{r}$ may be awarded up to 4 marks in part (b). These are M1A1dM1ddM1A0 and then the candidate may also be awarded the B1 mark in part (c). So 8 of the 10 marks maximum in all. (b) M1 A1: $\left\{\frac{dC}{dr} = \right\} 12\pi r - \frac{300}{r^2}$ or $12\pi r - 300r^{-2}$ (then isw) dM1: $12\pi r - \frac{300}{r^2} = 0$ so r^k = value where $k = 2, 3 \text{ or } 4 \text{ or } 12\pi r - \frac{300}{r^2} = 0$ so r^k = value ddM1: Use **cube** root to obtain $r = \left(their \frac{300}{12\pi}\right)^{\frac{1}{3}}$ (=1.996) - allow r = 2, and thus $C = \dots$ must use $C = 6\pi r^2 + \frac{300}{r}$ A0: Cannot obtain C = 483 or 484(c) B1: $\left\{ \frac{d^2 C}{dr^2} = \right\} 12\pi + \frac{600}{r^3} > 0$ so minimum OR checks gradient to left and right of 1.966 and shows gradient goes from negative to zero to positive so minimum OR checks value of C to left and right of 1.966 and shows that C > 225.4 so deduces minimum (i.e. uses shape of graph)

There is an example in Practice of this misread.

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom