

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Core Mathematics 2 (6664/01)

www.igexams.com

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 6664_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

www.igexams.com

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

www.igexams.com

PEARSON EDEXCEL GCE MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or $d . .$. The second mark is dependent on gaining the first mark

www.igexams.com

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as Aft .
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

www.igexams.com

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $p q|=|c|$ and $| m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1 .\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

www.igexams.com

Question Number	Scheme	Marks
1.	$r=\frac{3}{4}, S_{4}=175$	
(a) Way 1	$\begin{array}{ll} \frac{a\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}} \text { or } \frac{a\left(1-\frac{3^{4}}{4}\right)}{1-\frac{3}{4}} \text { or } \frac{a\left(1-0.75^{4}\right)}{1-0.75} & \begin{array}{l} \text { Substituting } r=\frac{3}{4} \text { or } 0.75 \text { and } n=4 \\ \text { into the formula for } S_{n} \end{array} \end{array}$	M1
	$175=\frac{a\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}} \Rightarrow a=\frac{175\left(1-\frac{3}{4}\right)}{\left(1-\left(\frac{3}{4}\right)^{4}\right)}\left\{\Rightarrow a=\frac{\left(\frac{175}{4}\right)}{\left(\frac{175}{256}\right)} \Rightarrow\right\} \underline{=64 *} \quad$ *orrect proof	A1*
		[2]
(a) Way 2		M1
	$\frac{175}{64} a=175\left(\Rightarrow a=\frac{175}{\left(\frac{175}{64}\right)}\right) \Rightarrow a=64 \text { * }$ Correct proof or $2.734375 a=175 \Rightarrow \underline{a=64}$	A1*
		[2]
(a) Way 3	$\left\{S_{4}=\right\} \frac{64\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}}$ or $\frac{64\left(1-\frac{3^{4}}{4}\right)}{1-\frac{3}{4}}$ or $\frac{64\left(1-0.75^{4}\right)}{1-0.75} \quad \begin{gathered}\text { Applying the formula for } S_{n} \\ \text { with } r=\frac{3}{4}, n=4 \text { and } a \text { as } 64 .\end{gathered}$	M1
	$=175$ so $a=64^{*} \quad$ Obtains 175 with no errors seen and concludes $\quad a=64^{*}$.	A1*
		[2]
(b)	$\left\{S_{\infty}\right\}=\frac{64}{\left(1-\frac{3}{4}\right)} ;=256 \quad S_{\infty}=\frac{\text { (their } a)}{1-\frac{3}{4}} \text { or } \frac{64}{1-\frac{3}{4}}$	M1;
		[2]
(c)	Writes down either " 64 " $\left(\frac{3}{4}\right)^{8}$ or awrt 6.4 or $\left\{D=T_{9}-T_{10}=\right\} 64\left(\frac{3}{4}\right)^{8}-64\left(\frac{3}{4}\right)^{9} \quad$ "64" $\left(\frac{3}{4}\right)^{9}$ or awrt 4.8, using $a=64$ or their a	M1
	A correct expression for the difference (i.e. $\left.\pm\left(T_{9}-T_{10}\right)\right)$ using $a=64$ or their a.	dM1
	$\left\{=64\left(\frac{3}{4}\right)^{8}\left(\frac{1}{4}\right)=1.6018066 \ldots\right\}=\underline{1.602}(3 \mathrm{dp}) \quad 1.602$ or -1.602	A1 cao
		[3]

Question 1 Notes

	Question 1 Notes	
1. (a)	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	Allow invisible brackets around fractions throughout all parts of this question.
		There are three possible methods as described above.
		Note that this is a "show that" question with a printed answer.
		In Way 1 this mark usually requires $a=p / q$ where p and q may be unsimplified brackets from the formula (or could be 11200/175 for example) as an intermediate step before the conclusion $a=64$.
		Exceptions include $a=175 / 4 * 256 / 175$ i.e. multiplication by reciprocal rather than division or 175 $=175 a / 64$ followed by the obvious $a=64$ These also get A1
		In "reverse" methods such as Way 3 we need a conclusion "so $a=64$ " or some implication that their argument is reversible. Also a conclusion can be implied from a preamble, eg: "If I assume a
		$=64$ then find $S=175$ as given this implies $a=64$ as required" This is a show that question and there should be no loss of accuracy.
		In all the methods if decimals are used there should not be rounding.
		If 0.68359375 appears this is correct. If it is rounded it would not give the exact answer. 64(1-0.31640625) or 43.75 are each correct - if they are rounded then treat this as incorrect
		e.g. Way 3: "43.75/0.25 $=175$ so $a=64$ is A1" but " $43 / 0.25=175$ so $a=64$ is A 0 " and " $44 / 0.25=175$ so $\mathrm{a}=64$ is A0"
		Yet another variant on Way 3: take $\mathrm{a}=64$ then find the next 3 terms as $48,36,27$ then add $64+48+36+27$ to get 175 . Again need conclusion that $a=64$ or some implication that their argument is reversible. Otherwise M1 A0
(b)		$S^{2}=64$ (their a found in part (a))
	M1	$S_{\infty}=\frac{x^{\frac{3}{4}}}{} \text { or } \frac{1-\frac{3}{4}}{}$
	A1	256 cao
(c)	NB	Using Sum of 10 terms minus Sum of 9 terms is NOT a misread Scores M0M0A0
	M1	Can be implied. Writes down either $64\left(\frac{3}{4}\right)^{8}$ or $64\left(\frac{3}{4}\right)^{9}$, using $a=64$ (or their a found in part (a)).
	Note	Ignore candidate's labelling of terms. $(3)^{8}$
	Note	$64\left(\frac{3}{4}\right)^{\circ}=6.407226563 \ldots \text { and } 64\left(\frac{3}{4}\right)^{\circ}=4.805419922 \ldots$
	dM1	This is dependent on previous M mark and can be implied. Either $(3)^{8} \quad(3)^{9} \quad(3)^{9} \quad(3)^{8}$
		$64\left(\frac{3}{4}\right)-64\left(\frac{3}{4}\right)$ or $64\left(\frac{3}{4}\right)-64\left(\frac{3}{4}\right)$ or awrt $6.4-\operatorname{awrt} 4.8$, using $a=64$ (or their a from part (a))
	Note	$1^{\text {st }}$ M1 and $2^{\text {nd }}$ M1 can be implied by the value of their difference $=$ "their a found in part (a) $" \times \frac{3^{8}}{4^{9}} \approx \frac{\text { "their } a \text { found in part (a)" }}{40}$
	Note	Either $64\left(\frac{3}{4}\right)^{9}-64\left(\frac{3}{4}\right)^{10}$ or $64\left(\frac{3}{4}\right)^{10}-64\left(\frac{3}{4}\right)^{9}$ is $1^{\text {st }} \mathrm{M} 1,2^{\text {nd }} \mathrm{M} 0$.
	A1	1.602 or -1.602 cao (This answer with no working is M1M1A1) But 1.6 with no working is MOMOAO
	Note	$\left\{D=\frac{1}{4} T_{9} \Rightarrow\right\} D=\frac{1}{4}(64)\left(\frac{3}{4}\right)^{8}$ is $1^{\text {st }} \mathrm{M} 1,2^{\mathrm{nd}} \mathrm{M} 1$
	Special case	Obtains awrt 6.4, then obtains awrt 4.8 but rounds to $6-5$ when subtracting - award M1M1A0

www.igexams.com

www.igexams.com

www.igexams.com

www.igexams.com

www.igexams.com

Question Number	Scheme		Marks
5.	(a) $(2-9 x)^{4}=2^{4}+{ }^{4} C_{1} 2^{3}(-9 x)+{ }^{4} C_{2} 2^{2}(-9 x)^{2}$, (b) $\mathrm{f}(x)=$	$(1+k x)(2-9 x)^{4}=A-232 x+B x^{2}$	
(a)	First term of 16 in their final series		B1
Way 1	At least one of $\left({ }^{4} C_{1} \times \ldots \times x\right)$ or $\left({ }^{4} C_{2} \times \ldots \times x^{2}\right)$		M1
	$=(16)-288 x+1944 x^{2}$	At least one of $-288 x$ or $+1944 x^{2}$	A1
		Both $-288 x$ and $+1944 x^{2}$	A1
			[4]
(a)	$(2-9 x)^{4}=\left(4-36 x+81 x^{2}\right)\left(4-36 x+81 x^{2}\right)$		
		First term of 16 in their final series	B1
Way 2	$=16-144 x+324 x^{2}-144 x+1296 x^{2}+324 x^{2}$$=(16)-288 x+1944 x^{2}$	Attempts to multiply a 3 term quadratic by the same 3 term quadratic to achieve either 2 terms in x or at least 2 terms in x^{2}.	M1
		At least one of $-288 x$ or $+1944 x^{2}$	A1
		Both $-288 x$ and $+1944 x^{2}$	A1
			[4]
(a) Way 3	$\begin{aligned} \left\{(2-9 x)^{4}\right. & =\} 2^{4}\left(1-\frac{9}{2} x\right)^{4} \\ & =2^{4}\left(1+\frac{4\left(-\frac{9}{2} x\right)+\frac{4(3)}{2}\left(-\frac{9}{2} x\right)^{2}+\ldots}{}\right) \\ & =(16)-288 x+1944 x^{2} \end{aligned}$	First term of 16 in final series	B1
		$(4 \times \ldots \times x) \text { or }\left(\frac{4(3)}{2} \times \ldots \times x^{2}\right)$	M1
		At least one of $-288 x$ or $+1944 x^{2}$	A1
		Both $-288 x$ and $+1944 x^{2}$	A1
			[4]
	Parts (b), (c) and (d) may be marked together		
(b)	$A=" 16 "$	Follow through their value from (a)	B1ft
			[1]
(c)	$\begin{aligned} & \left\{(1+k x)(2-9 x)^{4}\right\}=(1+k x)\left(16-288 x+\left\{1944 x^{2}+\ldots\right\}\right) \\ & x \text { terms: }-288 x+16 k x=-232 x \\ & \text { giving, } 16 k=56 \Rightarrow k=\frac{7}{2} \end{aligned}$	May be seen in part (b) or (d) and can be implied by work in parts (c) or (d).	M1
		$k=\frac{7}{2}$	A1
			[2]
(d)	x^{2} terms: $1944 x^{2}-288 k x^{2}$		
	So, $B=1944-288\left(\frac{7}{2}\right) ;=1944-1008=936$	See notes	M1
		936	A1
			[2]
			9

www.igexams.com

	Question 5 Notes		
(a) Ways 1 and 3	B1 cao		
		16	
	M1	They may have 4 and 6 or 4 and $\frac{4(3)}{2}$ or even $\binom{4}{1}$ and $\binom{4}{2}$ as their coefficients. Allow missing signs and brackets for the M marks.	
	$\mathbf{1}^{\text {st }}$ A1	At least one of $-288 x$ or $+1944 x^{2}$ (allow $+-288 x$)	
	$2^{\text {nd }}$ A1	Both $-288 x$ and $+1944 x^{2}$ (May list terms separated by commas) Also full marks for correct answer with no working here. Again allow $+-288 x$	
	Note	If the candidate then divides their final correct answer through by 8 or any other common factor then isw and mark correct series when first seen. So (a) B1M1A1A1 .It is likely that this approach will be followed by (b) B0, (c) M1A0, (d) M1A0 if they continue with their new series e.g. $2-36 x+283 x^{2}+\ldots$ (Do not ft the value 2 as a mark was awarded for 16)	
Way 2b	Special Case	Slight Variation on the solution given in the scheme$\begin{aligned}(2-9 x)^{4} & =(2-9 x)(2-9 x)\left(4-36 x+81 x^{2}\right) \\ & =(2-9 x)\left(8-108 x+486 x^{2}+\ldots\right)\end{aligned}$	
		First term of 16	B1
		$=16-216 x+972 x^{2}-72 x+972 x^{2}$ Multiplies out to give either 2 terms in x or 2 terms in x^{2}.	M1
		6) $288 x+1944 x^{2}+\quad$ At least one of $-288 x$ or $+1944 x^{2}$	A1
		Both -288x and +1944x ${ }^{2}$	A1
(b)	B1ft	Parts (b), (c) and (d) may be marked together.	
		Must identify $A=16$ or $A=$ their constant term found in part (a). Or may write just 16 if this is clearly their answer to part (b). If they expand their series and have 16 as first term of a series it is not sufficient for this mark.	
(c)	M1	Candidate shows intention to multiply ($1+k x$) by part of their series from (a) e.g. Just $(1+k x)(16-288 x+\ldots)$ or $(1+k x)\left(16-288 x+1944 x^{2}+\ldots\right)$ are fine for M1	
	Note A1	This mark can also be implied by candidate multiplying out to find two terms (or coefficients) in x. i.e. f.t. their $-288 x+16 k x$ N.B. $-288 k x=-232 x$ with no evidence of brackets is M0 - allow copying slips, or use of factored series, as this is a method mark	
(d)	M1	Multiplies out their $(1+k x)\left(16-288 x+1944 x^{2}+\ldots\right)$ to give exactly two terms (or coefficients)	
	A1	936	
	Note	Award A0 for $B=936 x^{2}$	
		But allow A1 for $B=936 x^{2}$ followed by $B=936$ and treat this as a correction Correct answers in parts (c) and (d) with no method shown may be awarded full credit.	

www.igexams.com

Question Number	Scheme	Marks
6.	$1-2 \cos \left(\theta-\frac{\pi}{5}\right)=0 ;-\pi<\theta$, π	
(i)	$\cos \left(\theta-\frac{\pi}{5}\right)=\frac{1}{2} \quad$ Rearranges to give $\cos \left(\theta-\frac{\pi}{5}\right)=\frac{1}{2}$ or $-\frac{1}{2}$	M1
	$\theta=\left\{-\frac{2 \pi}{15}, \frac{8 \pi}{15}\right\} \quad \text { At least one of }-\frac{2 \pi}{15} \text { or } \frac{8 \pi}{15} \text { or }-24^{\circ} \text { or } 96^{\circ} \text { or awrt } 1.68 \text { or awrt }-0.419$	A1 $-\quad$. A1
		[3]
NB Misread	Misreading $\frac{\pi}{5}$ as $\frac{\pi}{6}$ or $\frac{\pi}{3}$ (or anything else)- treat as misread so M1 A0 A0 is maximum mark	
	$4 \cos ^{2} x+7 \sin x-2=0,0, x<360^{\circ}$	
(ii)	$4\left(1-\sin ^{2} x\right)+7 \sin x-2=0 \quad$ Applies $\cos ^{2} x=1-\sin ^{2} x$	M1
	$4-4 \sin ^{2} x+7 \sin x-2=0$	
	$4 \sin ^{2} x-7 \sin x-2=0 \quad$ Correct 3 term, $4 \sin ^{2} x-7 \sin x-2\{=0\}$	A1 oe
	$(4 \sin x+1)(\sin x-2)\{=0\}, \sin x=\ldots$	M1
	$\sin x=-\frac{1}{4}, \quad\{\sin x=2\} \quad \sin x=-\frac{1}{4}$ (See notes.	A1 cso
	$x=\operatorname{awrt}\{194.5,345.5\} \quad$ At least one of awrt 194.5 or awrt 345.5 or awrt 3.4 or	Alft
		A1
		[6]
		9
$\begin{gathered} \text { NB } \\ \text { Misread } \end{gathered}$	Writing equation as $4 \cos ^{2} x-7 \sin x-2=0$ with a sign error should be marked by applying the scheme as it simplifies the solution (do not treat as misread) Max mark is $3 / 6$	
	$4\left(1-\sin ^{2} x\right)-7 \sin x-2=0$	M1
	$4 \sin ^{2} x+7 \sin x-2=0$	A0
	$(4 \sin x-1)(\sin x+2)\{=0\}, \sin x=\ldots \quad$ Valid attempt at solving and $\sin x=\ldots$	M1
	$\left.\sin x=+\frac{1}{4}, \quad\{\sin x=-2\} \quad \sin x=\frac{1}{4} \text { (See notes. }\right)$	A0
	$x=$ awrt1 65.5	A1ft
	Incorrect answers	A0

Question 6 Notes

Both answers correct and in radians as multiples of $\pi \quad-\frac{2 \pi}{15}$ and $\frac{8 \pi}{15}$
Ignore EXTRA solutions outside the range $-\pi<\theta \leq \pi$ but lose this mark for extra solutions in this range.

Using $\cos ^{2} x=1-\sin ^{2} x$ on the given equation. [Applying $\cos ^{2} x=\sin ^{2} x-1$, scores M0.] Obtaining a correct three term equation eg. either $4 \sin ^{2} x-7 \sin x-2\{=0\}$ or $-4 \sin ^{2} x+7 \sin x+2\{=0\}$ or $4 \sin ^{2} x-7 \sin x=2$ or $4 \sin ^{2} x=7 \sin x+2$, etc.
For a valid attempt at solving a 3 TQ quadratic in sine. Methods include factorization, quadratic formula, completion of the square (unlikely here) and calculator. (See notes on page 6 for general principles on awarding this mark) Can use any variable here, s, y, x or $\sin x$, and an attempt to find at least one of the solutions for $\sin x$. This solution may be outside the range for $\sin x$ $\sin x=-\frac{1}{4}$ BY A CORRECT SOLUTION ONLY UP TO THIS POINT. Ignore extra answer of $\sin x=2$, but penalise if candidate states an incorrect result. e.g. $\sin x=-2$. $\sin x=-\frac{1}{4}$ can be implied by later correct working if no errors are seen.
$3^{\text {rd }}$ A1ft
$4^{\text {th }}$ A1 Note

Special
Cases

Rearranges to give $\cos \left(\theta-\frac{\pi}{5}\right)= \pm \frac{1}{2}$
M1 can be implied by seeing either $\frac{\pi}{3}$ or 60° as a result of taking $\cos ^{-1}(\ldots)$.
Answers may be in degrees or radians for this mark and may have just one correct answer Ignore mixed units in working if correct answers follow (recovery)

At least one of awrt 194.5 or awrt 345.5 or awrt 3.4 or awrt 6.0. This is a limited follow through. Only follow through on the error $\sin x=\frac{1}{4}$ and allow for 165.5 special case (as this is equivalent work) This error is likely to earn M1A1M1A0A1A0 so 4/6 or M1A0M1A0A1A0 if the quadratic had a sign slip.
awrt 194.5 and awrt 345.5
If there are any EXTRA solutions inside the range $0, x<360^{\circ}$ and the candidate would otherwise score FULL MARKS then withhold the final A1 mark.
Ignore EXTRA solutions outside the range $0, x<360^{\circ}$.
Rounding error Allow M1A1M1A1A1A0 for those who give two correct answers but wrong accuracy e.g. awrt 194, 346 (Remove final A1 for this error)
Answers in radians:- lose final mark so either or both of 3.4, 6.0 gets A1ftA0
It is possible to earn M1A0A1A1 on the final 4 marks if an error results fortuitously in $\sin x=-1 / 4$ then correct work follows.

www.igexams.com

www.igexams.com

Question Number	Scheme	Marks
8(i)	Two Ways of answering the question are given in part (i)	
Way 1	$\log _{3}\left(\frac{3 b+1}{a-2}\right)=-1 \quad$ or $\quad \log _{3}\left(\frac{a-2}{3 b+1}\right)=1 \quad$ Applying the subtraction law of logarithms	M1
	$\frac{3 b+1}{a-2}=3^{-1}\left\{=\frac{1}{3}\right\}$ or $\left(\frac{a-2}{3 b+1}\right)=3 \quad \begin{array}{r}\text { Making a correct connection between } \\ \text { log base } 3 \text { and } 3 \text { to a power. }\end{array}$	M1
	$\{9 b+3=a-2 \Rightarrow\}=\frac{1}{9} a-\frac{5}{9} \quad b=\frac{1}{9} a-\frac{5}{9}$ or $b=\frac{a-5}{9}$	A1 oe
		[3]
	In Way 2 a correct connection between log base 3 and " 3 to a power" is used before applying the subtraction or addition law of logs	
$\begin{gathered} \text { (i) } \\ \text { Way } 2 \end{gathered}$	Either $\log _{3}(3 b+1)-\log _{3}(a-2)=-\log _{3} 3$ or $\log _{3}(3 b+1)+\log _{3} 3=\log _{3}(a-2)$	$2^{\text {nd }}$ M1
	$\log _{3}(3 b+1)=\log _{3}(a-2)-\log _{3} 3=\log _{3}\left(\frac{a-2}{3}\right)$ or $\log _{3} 3(3 b+1)=\log _{3}(a-2)$	$1^{\text {st }}$ M1
	$\left\{3 b+1=\frac{a-2}{3}\right\} \quad b=\frac{1}{9} a-\frac{5}{9}$	A1
		[3]
	Five Ways of answering the question are given in part (ii)	
(ii) Way 1 See also common approach below in notes	$32\left(2^{2 x}\right)-7\left(2^{x}\right)=0 \quad$ Deals with power 5 correctly giving $\times 32$	M1
	So, $\quad 2^{x}=\frac{7}{32}$$x \log 2=\log \left(\frac{7}{32}\right) \text { or } x=\frac{\log \left(\frac{7}{32}\right)}{\log 2} \text { or } x=\log _{2}\left(\frac{7}{32}\right)$	A1 oe dM1
	$x=-2.192645$.. awrt-2.19	A1
		[4]
	Begins with $2^{2 x+5}=7\left(2^{x}\right)$ (for Way 2 and Way 3) (see notes below)	
(ii) Way 2	Correct application of $(2 x+5) \log 2=\log 7+x \log 2 \quad \ldots \ldots$ either the power law or addition law of logathms	M1
	Correct result after applying the power and addition laws of logarithms.	A1
	$\begin{aligned} & 2 x \log 2+5 \log 2=\log 7+x \log 2 \\ \Rightarrow & x=\frac{\log 7-5 \log 2}{\log 2} \end{aligned}$ Multiplies out, collects x terms to achieve $x=\ldots$	dM1
	$x=-2.192645 \ldots$.. awrt 2.19	A1
		[4]
(ii) Way 3	$2 x+5=\log _{2} 7+x$ Eviden	M1
		A1
	$2 x-x=\log _{2} 7-5$ $\Rightarrow x=\log _{2} 7-5$	dM1
	$x=-2.192645 \ldots . .$.	A1
		[4]

www.igexams.com

(ii) Way 4	$2^{2 x+5}=7\left(2^{x}\right) \Rightarrow 2^{x+5}=7$		
	$x+5=\log _{2} 7$ or $\frac{\log 7}{\log 2}$	Evidence of $\log _{2}$ and either $2^{x+5} \rightarrow x+5$ or $7 \rightarrow \log _{2} 7$	M1
		$x+5=\log _{2} 7$ oe.	A1
	$x=\log _{2} 7-5$	Rearranges to achieve $x=\ldots$	dM1
	$x=-2.192645 \ldots$	awrt -2.19	A1
			[4]
Way 5 (similar to Way 3)	$2^{2 x+5}=2^{\log _{2} 7}\left(2^{x}\right)$	7 is replaced by $2^{\log _{2} 7}$	M1
	$2 x+5=\log _{2} 7+x$	$2 x+5=\log _{2} 7+x$ oe.	A1
	$\begin{aligned} & 2 x-x=\log _{2} 7-5 \\ & \Rightarrow x=\log _{2} 7-5 \end{aligned}$	Collects x terms to achieve $x=\ldots$	dM1
	$x=-2.192645 .$.	awrt -2.19	A1
			[4]
			7

		Question 8 Notes
(i)	$1^{\text {st }}$ M1	Applying either the addition or subtraction law of logarithms correctly to combine any two log terms into one log term.
	$\begin{gathered} 2^{\text {nd }} \mathrm{M} 1 \\ \text { A1 } \end{gathered}$	For making a correct connection between log base 3 and 3 to a power. $b=\frac{1}{9} a-\frac{5}{9}$ or $b=\frac{a-5}{9}$ o.e. e.g. Accept $b=\frac{1}{3}\left(\frac{a}{3}-\frac{5}{3}\right)$ but not $b=\frac{a-2}{9}-\frac{3}{9}$ nor $b=\frac{\left(\frac{a}{3}-\frac{5}{3}\right)}{3}$
(ii)	$1^{\text {st }}$ M1	First step towards solution - an equation with one side or other correct or one term dealt with correctly (see five* possible methods above)
	$\begin{gathered} \mathbf{1}^{\text {st }} \mathbf{A 1} \\ \text { dM1 } \end{gathered}$	Completely correct first step - giving a correct equation as shown above Correct complete method (all log work correct) and working to reach $x=$ in terms of logs reaching a correct expression or one where the only errors are slips solving linear equations
		Accept answers which round to -2.19 If a second answer is also given this becomes A0 Writes $\frac{\log _{3}(3 b+1)}{\log _{3}(a-2)}=-1$ and proceeds to $\frac{3 b+1}{a-2}=3^{-1}\left\{=\frac{1}{3}\right\}$ and to correct answer- Give
	(i) Common approach to part (ii)	M0M1A1 (special case) Let $2^{x}=y$ Treat this as Way 1 They get $32 y^{2}-7 y=0$ for M1 and need to reach $y=\frac{7}{32}$ for A1 Then back to Way $\mathbf{1}$ as before. Any letter may be used for the new variable which I have called y. If they use x and obtain $x=\frac{7}{32}$, this may be awarded M1A0M0A0 Those who get $y^{2}-7 y+32=0$ or $y^{7}-7 y=0$ will be awarded M0,A0,M0,A0
	Common Presentation of Work in ii	Many begin with $\log \left(2^{2 x+5}\right)-\log \left(7\left(2^{x}\right)\right)=0$. It is possible to reach this in two stages correctly so do not penalise this and award the full marks if they continue correctly as in Way 2. If however the solution continues with $(2 x+5) \log 2-x \log 14=0$ or with $(2 x+5) \log 2-7 x \log 2=0$ (both incorrect) then they are awarded M1A0M0A0 just getting credit for the $(2 x+5) \log 2$ term.
	Note	N.B. The answer $(+) 2.19$ results from "algebraic errors solving linear equations" leading to $2^{x}=\frac{32}{7}$ and gets M1A0M1A0

wWw.igexams.com

Question Number	Scheme	Marks
9. (a)	$\frac{1}{2} x^{2} \times\left(\frac{2 \pi}{3}\right)$ or $\frac{120}{360} \times \pi x^{2}$ simplified or un- $\operatorname{Area}(F E A)=\frac{1}{2} x^{2}\left(\frac{2 \pi}{3}\right) ;=\frac{\pi x^{2}}{3}$ simplified	M1
	$\frac{\pi x^{2}}{3}$	A1
		[2]
	Parts (b) and (c) may be marked together	
(b)	($4=\} \frac{1}{2} x^{2} \sin 60^{\circ}+\frac{1}{3} x^{2}+2 x y \quad$ Attempt to sum 3 areas (at least one correct)	M1
	$\{A=\}-2 x^{2} \sin 60+\frac{1}{3} \pi x^{2}+2 x y \quad$ Correct expression for at least two terms of A	A1
	$\begin{aligned} & 1000=\frac{\sqrt{3} x^{2}}{4}+\frac{\pi x^{2}}{3}+2 x y \Rightarrow y=\frac{500}{x}-\frac{\sqrt{3} x}{8}-\frac{\pi x}{6} \\ & \Rightarrow y=\frac{500}{x}-\frac{x}{24}(4 \pi+3 \sqrt{3}) \end{aligned}$ Correct proof.	A1*
		[3]
(c)	$\{P=\} x+x \theta+y+2 x+y\left\{=3 x+\frac{2 \pi x}{3}+2 y\right\} \quad \begin{array}{r}\text { Correct expression in } x \text { and } y \text { for } \\ \text { their } \theta \text { measured in rads }\end{array}$	B1ft
	$\ldots 2 y=+2\left(\frac{500}{x}-\frac{x}{24}(4 \pi+3 \sqrt{3})\right) \quad$ Substitutes expression from (b) into	M1
	$P=3 x+\frac{2 \pi x}{3}+\frac{1000}{x}-\frac{\pi x}{3}-\frac{\sqrt{3}}{4} x \Rightarrow P=\frac{1000}{x}+3 x+\frac{\pi x}{3}-\frac{\sqrt{3}}{4} x$	
	$\Rightarrow P=\frac{1000}{x}+\frac{x}{12}(4 \pi+36-3 \sqrt{3}) * \quad$ Correct proof.	A1*
		[3]
	Parts (d) and (e) should be marked together	
(d)	$\frac{\mathrm{d} P}{\mathrm{~d} x}=-1000 x^{-2}+\frac{4 \pi+36-3 \sqrt{3}}{12} ;=0$	M1
		A1;
	Their $P^{\prime}=0$	M1
	$\Rightarrow x=\sqrt{\frac{1000(12)}{4 \pi+36-3 \sqrt{3}}}(=16.63392808 \ldots) \quad \sqrt{\frac{1000(12)}{4 \pi+36-3 \sqrt{3}}}$ or awrt 17 (may be	A1
		A1
		[5]
(e)	Finds $P^{\prime \prime}$ and considers sign.	M1
	$\frac{\mathrm{d}^{2} P}{\mathrm{~d} x^{2}}=\frac{2000}{x^{3}}>0 \Rightarrow \text { Minimum } \quad \frac{2000}{x^{3}} \text { (need not be simplified) and }>0 \text { and conclusion. }$	A1ft
		[2]
		15

		Question 9 Notes
(a)	M1 A1	$\begin{aligned} & \text { Attempts to use Area }(F E A)=\frac{1}{2} x^{2} \times \frac{2 \pi}{3} \text { (using radian angle) or } \frac{120}{360} \times \pi x^{2} \text { (using angle in } \\ & \text { degrees) } \\ & \frac{\pi x^{2}}{3} \text { cao (Must be simplified and be their answer in part (a)) Answer only implies M1A1. } \\ & \text { N.B. Area }(F E A)=\frac{1}{2} x^{2} \times 120 \text { is awarded M0A0 } \end{aligned}$
(b)	M1	An attempt to sum 3 " areas" consisting of rectangle, triangle and sector (allow slips even in dimensions) but one area should be correct
	$1^{\text {st }}$ A1	Correct expression for two of the three areas listed above. Accept any correct equivalents e.g. two correct from $\frac{1}{2} x^{2} \sin \left(\frac{\pi}{3}\right)$ or $\frac{1}{4} x^{2} \sqrt{3}, \frac{1}{2} \times \frac{2}{3} \pi x^{2}, 2 x y$
	$2^{\text {nd }}$ A1*	This is a given answer which should be stated and should be achieved without error so all three areas must have been correct and their sum put equal to 1000 and an intermediate step of rearrangement should be present.
(c)	B1ft	Correct expression for P from arc length, length $A B$ and three sides of rectangle in terms of both x and y with $2 y$ (or $y+y$), $3 x$ (or $x+2 x$) (or $x+x+x$), and $x \theta$ clearly listed. Allow addition after substitution of y. NB $\theta=\frac{2 \pi}{3}$ but allow use of their consistent θ in radians (usually $\theta=\frac{\pi}{3}$) from parts (a) and (b) for this mark. $120 x$ or $60 x$ do not get this mark.
	M1	Substitutes $y=\frac{500}{x}-\frac{x}{24}(4 \pi+3 \sqrt{3})$ or their unsimplified attempt at y from earlier (allow slips e.g. sign slips) into $2 y$ term.
	A1* $\mathbf{1}^{\text {st }}$ M1	This is a given answer which should be stated and should be achieved without error Need to see at least $\frac{1000}{x} \rightarrow \frac{ \pm \lambda}{x^{2}}$
(d)	$1^{\text {st }}$ A1	Correct differentiation of both terms (need not be simplified) Not follow through. Allow any correct equivalent. e.g. $\frac{\mathrm{d} P}{\mathrm{~d} x}=-1000 x^{-2}+\frac{\pi}{3}+3-\frac{\sqrt{3}}{4}$ Also allow $\frac{\mathrm{d} P}{\mathrm{~d} x}=-1000 x^{-2}+$ awrt 3.61 Check carefully as there are many correct equivalents and some have two terms in $x \pi$ to differentiate obtaining for example $\frac{2 \pi}{3}-\frac{8 \pi}{24}$ instead of $\frac{\pi}{3}$
	$2^{\text {nd }}$ M1	Setting their $\frac{\mathrm{d} P}{\mathrm{~d} x}=0$. Do not need to find x, but if inequalities are used this mark cannot be gained until candidate states or uses a value of x without inequalities. May not be explicit but may be implied by correct working and value or expression for x. May result in $x^{2}<0$ so M1A0
	$2^{\text {nd }}$ A1 $3^{\text {rd }}$ A1	There is no requirement to write down a value for x, so this mark may be implied by a correct value for P. It may be given for a correct expression or value for x of $16.6,16.7$ or 17 Allow answers wrt 120 but not 121
(e)	M1	Finds $P^{\prime \prime}$ and considers sign. Follow through correct differentiation of their P^{\prime} (not just reduction of power)
	A1ft	Need $\frac{2000}{x^{3}}$ and >0 (or positive value) and conclusion. Only follow through on a correct $P^{\prime \prime}$ and a value for x in the range $10<x<25$ (need not see x substituted but an x should have been found) If P is substituted then this is awarded M1 A0

Special case	wwhoigexamms.c.ome (d) Some candidates multiply 12 stomplify 1 they write $\frac{\mathrm{d} P}{\mathrm{~d} x}=-12000 x^{-2}+4 \pi+36-3 \sqrt{3} ;=0$ then solve they will get the correct x and P They should be awarded M1A0M1A1A1 in part (d). If they then do part (e) writing $\frac{\mathrm{d}^{2} P}{\mathrm{~d} x^{2}}=\frac{24000}{x^{3}}>0 \Rightarrow$ Minimum They should be awarded M1A0 (so lose 2 marks in all) If they wrote $\frac{\mathrm{d}(12 P)}{\mathrm{d} x}=-12000 x^{-2}+4 \pi+36-3 \sqrt{3} ;=0$ etc they could get full marks.

www.igexams.com

