Pearson

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE Mathematics

Core Mathematics 2 (6664/01)

www.igexams.com

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code xxxxxxxx*
All the material in this publication is copyright
© Pearson Education Ltd 2017

www.igexams.com

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

www.igexams.com

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it^{\prime}, unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct $f t$
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

www.igexams.com

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

www.igexams.com

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

www.igexams.com

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

www.igexams.com

Question Number	Scheme ${ }_{\text {a }}$ Marks
1.	$\begin{aligned} & \left(3-\frac{1}{3} x\right)^{5}- \\ & 3^{5}+{ }^{5} C_{1} 3^{4}\left(-\frac{1}{3} x\right)+{ }^{5} C_{2} 3^{3}\left(-\frac{1}{3} x\right)^{2}+{ }^{5} C_{3} 3^{2}\left(-\frac{1}{3} x\right)^{3} \ldots \end{aligned}$ First term of 243 $\begin{aligned} & \left({ }^{5} C_{1} \times \ldots \times x\right)+\left({ }^{5} C_{2} \times \ldots \times x^{2}\right)+\left({ }^{5} C_{3} \times \ldots \times x^{3}\right) \ldots \\ & =(243 \ldots)-\frac{405}{3} x+\frac{270}{9} x^{2}-\frac{90}{27} x^{3} \ldots \\ & =(243 \ldots)-135 x+30 x^{2}-\frac{10}{3} x^{3} . . \end{aligned}$
Alternative method	$\begin{aligned} & \left(3-\frac{1}{3} x\right)^{5}=3^{5}\left(1-\frac{x}{9}\right)^{5} \\ & 3^{5}\left(1+{ }^{5} C_{1}\left(-\frac{1}{9} x\right)+{ }^{5} C_{2}\left(-\frac{1}{9} x\right)^{2}+{ }^{5} C_{3}\left(-\frac{1}{9} x\right)^{3} \ldots\right) \end{aligned}$ Scheme is applied exactly as before
	Notes B1: The constant term should be 243 in their expansion M1: Two of the three binomial coefficients must be correct and must be with the correct power of x. Accept ${ }^{5} C_{1}$ or $\binom{5}{1}$ or 5 as a coefficient, and ${ }^{5} C_{2}$ or $\binom{5}{2}$ or 10 as another and ${ }^{5} C_{3}$ or $\binom{5}{3}$ or 10 as another........ Pascal's triangle may be used to establish coefficients. NB: If they only include the first two of these terms then the M1 may be awarded. A1: Two of the final three terms correct - may be unsimplified i.e. two of $-135 x+30 x^{2}-\frac{10}{3} x^{3}$ correct, or two of $-\frac{405}{3} x+\frac{270}{9} x^{2}-\frac{90}{27} x^{3}$ (may be just two terms) A1: All three final terms correct and simplified. (Can be listed with commas or appear on separate lines. Accept in reverse order.) Accept correct alternatives to $-\frac{10}{3}$ e.g. $-3 \frac{1}{3}$ or -3.3 the recurring must be clear. 3.3 is not acceptable. Allow e.g. $+-135 x$
	e.g. The common error $3^{5}+{ }^{5} C_{1} 3^{4}\left(-\frac{1}{3}\right) x+{ }^{5} C_{2} 3^{3}\left(-\frac{1}{3}\right) x^{2}+{ }^{5} C_{3} 3^{2}\left(-\frac{1}{3}\right) x^{3}=(243)-135 x-90 x^{2}-30 x^{3}$ would earn B1, M1, A0, A0, so $2 / 4$ If extra terms are given then isw No negative signs in answer also earns B1, M1, A0, A0 If the series is divided through by 3 at the final stage after an error or omission resulting in all multiple of three coefficients then apply scheme to series before this division and ignore subsequent work (isw) Special Case: Only gives first three terms $=(243 .)-.135 x+30 x^{2} \ldots$ or $243-\frac{405}{3} x+\frac{270}{9} x^{2}$ Follow the scheme to give B1 M1 A1 A0 special case. (Do not treat as misread.) Answers such as $243+405-\frac{1}{3} x+270-\frac{1}{9} x^{2}+90-\frac{1}{27} x^{3}$.. gain no credit as the binomial coefficients are not linked to the x terms.

Question Number	Scheme ${ }^{\text {a }}$ Marks
2.	$\frac{\sin x}{16}=\frac{\sin 50^{\circ}}{13}$ M1 $(\sin x)=\frac{16 \times \sin 50}{13}(=0.943$ but accept 0.94$)$ A1 $x=$ awrt $70.5(3)$ and $109.5 \quad$ or 70.6 and 109.4 dM1 A1
	Notes M1: use sine formula correctly in any form. Allow awrt 0.77 for $\sin 50^{\circ}$ A1: give the correct value or correct expression for $\sin x$ (this implies the M1 mark). If it is given as expression they do not need degrees symbol. $\frac{\sin 50 \times 16}{13}$ is fine, If this is given as a decimal allow answers which round to 0.94 . Allow awrt -0.323 (radians) here but no further marks are available. If they give this as $x(\operatorname{not} \sin x)$ and do not recover this is A0 dM 1 : Correct work leading to $x=\ldots$ (via inverse \sin) expression or value for $\sin x$ If the previous A mark has been awarded for a correct expression then this is for getting to awrt 70.5 or 109.5 (allow for 70.6 or 109.4). If the previous A mark was not gained, e.g. rounding errors were made in rearranging the correct sine formula then award dM1 for evidence of use of inverse sin in degrees on their value for $\sin x$ (may need to check on calculator). NB 70.5 following a correct sine formula will gain M1A1M1. A1: deduce and state both of the answers $x=70.5$ and 109.5 (do not need degrees) Accept awrt these. Also accept 70.6 and 109.4. (Second answer is sometimes obtained by a long indirect route but still scores A1) If working in radians throughout, answers are 1.23 and 1.91 and this can be awarded M1 A1 M1 A0 (Working with 50 radians gives probable answers of -0.3288 and 3.47 giving M1A1M0A0) Special case: Wrong labelling of triangle. This simplifies the problem as there is only one solution for angle x. So it is not treated as a misread. If they find the missing side as awrt 12.6 then proceed to find an angle or its sine or cosine then give M1A0M0A0
	Alternative Method using cosine rule Let $B C=a$. M1: uses the cosine rule to form to form a three term quadratic equation in a (e.g. $a^{2}-32 a \cos 50^{\circ}+87=0$ or $a^{2}-$ awrt20.6a+87=0 though allow slips in signs rearranging) A1: Solves and obtains a correct value for a of awrt 14.6 or awrt 5.95 . dM1: A correct full method to find (at least) one of the two angles. May use cosine rule again, or find angle $B A C$ and then use sine rule. As in the main scheme, if the previous A mark has been awarded then they should obtain one of the correct angles for this mark. A1: deduces both correct answer as in main scheme. NB obtaining only one correct angle will usually score M1A1M1A0 in any method.

Question number	Scheme	Marks
$\mathbf{5}$	$x^{2}+y^{2}-10 x+6 y+30=0$ (a)	Uses any appropriate method to find the coordinates of the centre, e.g achieves $\underline{(x \pm 5)^{2}}+\underline{\underline{(y \pm 3)^{2}}}=\ldots$ Accept $(\pm 5, \pm 3)$ as indication of this.

www.igexams.com

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 6. (a) \& Attempt \(\mathrm{f}(3)\) or \(\mathrm{f}(-3)\) Use of long division is M0A0 as factor theorem was require \(\mathrm{f}(-3)=162-63-120+21=0 \quad\) so \((x+3)\) is a factor \& \\
\hline \multirow[t]{3}{*}{(b)} \& Either (Way 1): \(\mathrm{f}(x)=(x+3)\) \& \begin{tabular}{l}
M1A1 \\
M1A1 \\
(4)
\end{tabular} \\
\hline \& \begin{tabular}{l}
Or (Way 2) Uses trial or factor theorem to obtain \(x=-1 / 2\) or \(x=7 / 3\) Uses trial or factor theorem to obtain both \(x=-1 / 2\) and \(x=7 / 3\) \\
Puts three factors together (see notes below) \\
Correct factorisation : \((x+3)(7-3 x)(2 x+1)\) or \(-(x+3)(3 x-7)(2 x+1)\) oe
\end{tabular} \& M1
A1
M1
A1 \\
\hline \& Or (Way 3) No \& \\
\hline (c) \& \[
\begin{aligned}
\& 2^{y}=\frac{7}{3}, \rightarrow \log \left(2^{y}\right)=\log \left(\frac{7}{3}\right) \text { or } y=\log _{2}\left(\frac{7}{3}\right) \text { or } \frac{\log (7 / 3)}{\log 2} \\
\& \{y=1.222392421 \ldots\} \Rightarrow y=\text { awrt } 1.22
\end{aligned}
\] \& \begin{tabular}{l}
B1, M1 \\
A1 \\
(3) \\
[9]
\end{tabular} \\
\hline (a)
(b)

(c) \& \multicolumn{2}{|l|}{| Notes |
| :--- |
| M1 for attempting either $\mathrm{f}(3)$ or $\mathrm{f}(-3)$ - with numbers substituted into expression |
| A1 for calculating $\mathrm{f}(-3)$ correctly to $\mathbf{0}$, and they must state $(x+3)$ is a factor for A 1 (or equivalent ie. QED, \square or a tick). A conclusion may be implied by a preamble, "if $\mathrm{f}(-3)=0,(x+3)$ is a factor". |
| $-6(-3)^{3}-7(-3)^{2}+40(-3)+21=0$ so $(x+3)$ is a factor of $\mathrm{f}(x)$ is M1A1 providing bracketing is correct. |
| $1^{\text {st }} \mathrm{M} 1$: attempting to divide by $(x+3)$ leading to a 3TQ beginning with the correct term, usually $-6 x^{2}$. |
| This may be done by a variety of methods including long division, comparison of coefficients, inspection etc. Allow for work in part (a) if the result is used in (b). |
| $1^{\text {st }} \mathrm{A}$: usually for $\left(-6 x^{2}+11 x+7\right) \ldots$ Credit when seen and use isw if miscopied |
| $2^{\text {nd }} \mathrm{M} 1$: for a valid ${ }^{*}$ attempt to factorise their quadratic (* see notes on page 6-General Principles for Core Mathematics Marking section 1) |
| $2^{\text {nd }} \mathrm{A} 1$ is cao and needs all three factors together fully factorised. Accept e.g. $-3(x+3)\left(x-\frac{7}{3}\right)(2 x+1)$ but $(x+3)\left(x-\frac{7}{3}\right)(-6 x-3)$ and $(x+3)(3 x-7)(-2 x-1)$ are A0 as not fully factorised. |
| Ignore subsequent work (such as a solution to a quadratic equation.) |
| Way 2: The second M mark needs three roots together so $\pm 6(x-\alpha)(x-\beta)(x+3)$ or equivalent where they obtained α and β by trial, so if correct roots identified, then $(x+3)(3 x-7)(2 x+1)$ can gain M1A1M1A0. |
| N.B. Replacing $\left(-6 x^{2}+11 x+7\right)$ (already awarded M1A1) by $\left(6 x^{2}-11 x-7\right)$ giving $(x+3)(3 x-7)(2 x+1)$ can have M1A0 for factorization so M1A1M1A0 |
| B1: $2^{y}=\frac{7}{3}$ |
| M1: Attempt to take logs to solve $2^{y}=\alpha$ or $2^{y}=1 / \alpha$, where $\alpha>0$ and α was a root of their factorization. A1: for an answer that rounds to 1.22 . If other answers are included (and not "rejected") such as $\ln (-3)$ or - 1 lose final A mark |
| Special case: Those who deal throughout with $\mathrm{f}(x)=6 x^{3}+7 x^{2}-40 x-21$ |
| They may have full credit in part (a). In part (b) they can achieve a maximum of M1A0M1A0 unless they return the negative sign to give the correct answer. This is then full marks. Part (c) is fine. So they could lose 2 marks on the factorisation. (Like a misread) |}

\hline
\end{tabular}

www.igexams.com

www.igexams.com

NB: Those who attempt curve - line wrongly with limits $-1 / 4$ to 2 may earn M1A1 for correct integration of their cubic. Usually e.g.
$\int\left(4 x^{3}+9 x^{2}-55 x+42\right) \mathrm{d} x=x^{4}+\frac{9}{3} x^{3}-\frac{55 x^{2}}{2}+42 x\{+c\}$
(They will not earn any of the last 3 marks)
They may also get first B1 mark for the correct equation of the straight line (usually seen but may be implied by correct line -curve equation) and second B1 if they also use limits 1 and 2 to obtain 4.5 (or find the triangle area 12.5).

Notes

M1: Attempt at differentiation - all powers reduced by 1 with $8 \rightarrow 0$.
A1: the derivative must be correct and uses derivative $=0$ to find x or substitutes $x=1$ to give 0 . Ignore any reference to the other root ($-5 / 2$) for this mark.
A1cso: obtains $x=1$ from correct work, or deduces turning point (if substitution used - may be implied by a preamble e.g. $\mathrm{d} y / \mathrm{d} x=0$ at T.P.)
N.B. If their factorisation or their second root is incorrect then award A0cso.

If however their factorisation/roots are correct, it is not necessary for them to comment that -2.5 is outside the range given.
(b)

Way 1:
B1: Obtains $y=-25$ when $x=1$ (may be seen anywhere - even in (a)) or finds correct equation of line is $y=25 x-50$
B1: Obtains area of triangle $=12.5$ (may be seen anywhere) . Allow -12.5 . Accept $\frac{1}{2} \times 1 \times 25$
M1: Attempt at integration of cubic; two correct terms for their integration. No limits needed
A1: completely correct integral for the cubic (may be unsimplified)
dM 1 : We are looking for the start of a correct method here (dependent on previous M). It is for substituting 1 and $-1 / 4$ and subtracting. May use 2 and $-1 / 4$ and also 2 and 1 AND subtract (which is equivalent)
ddM1 (depends on both method marks) Correct method to obtain shaded area so adds two positive numbers (areas) together - one is area of triangle, the other is area of region obtained from integration of correct function with correct limits (may add two negatives then makes positive)
Way 2: This is a long method and needs to be a correct method
B1: Finds $y=-25$ at $x=1$,or correct equation of line is $y=25 x-50$
B1: May be implied where WAY 2 is used and final correct answer obtained so award of final A1 results in the award of this B1. It may also be implied by correct integration of line equation or of curve minus line expression between limits 1 and 2 . So if only slip is final subtraction (giving final A0, this mark may still be awarded) So may be implied by 4.5 seen for area of "segment shaped" region between line and curve.
M1: Attempt at integration of given cubic or after attempt at subtracting their line equation (no limits needed). Two correct terms needed
A1: Completely correct integral for their cubic (may be unsimplified) - may have wrong coefficients of x and wrong constant term through errors in subtraction
dM 1 : Use limits for original curve between $\mathbf{- 1 / 4}$ and 2 and use limits of $\mathbf{1}$ and $\mathbf{2}$ for area between line and curve- needs completely correct limits- see scheme- this is dependent on two integrations ddM1: (depends on both method marks) Subtracts "their 37.0195"- "their 4.5" Needs consistency of signs.
A1: 32.52 or awrt 32.52 e.g. $32 \frac{133}{256}$ NB: This correct answer implies the second B mark (Trapezium rule gets no marks after first two B marks) The first two B marks may be given wherever seen. The integration of a cubic gives the following M1 and correct integration of their cubic
$\int\left(4 x^{3}+9 x^{2}+A x+B\right) \mathrm{d} x=x^{4}+\frac{9}{3} x^{3}+\frac{A x^{2}}{2}+B x\{+c\}$ gives the A1

www.igexams.com

