edexcel 흧

Mark Scheme (Results)
Summer 2014

Pearson Edexcel International A Level in Core Mathematics C34 (WMA02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code IA038476
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL I AL MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 125 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

www.igexams.com

5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|, \quad$ leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$
2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1 .\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

$$
\text { Power of at least one term increased by } 1 .\left(x^{n} \rightarrow x^{n+1}\right)
$$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Marks
1. (a)	$\mathrm{f}(1.5)=-1.75, \mathrm{f}(2)=8$	M1
	Sign change (and $\mathrm{f}(x)$ is continuous) therefore there is a root α \{lies in the interval [1.5, 2] \}	A1 [2]
(b)	$x_{1}=\left(5-\frac{1}{2}(1.5)\right)^{\frac{1}{3}}$	M1
	$x_{1}=1.6198, \quad x_{1}=1.6198 \text { сао }$	A1cao
	$x_{2}=1.612159576 \ldots, x_{3}=1.612649754 \ldots \quad x_{2}=$ awrt 1.6122 and $x_{3}=$ awrt 1.6126	A1 [3]
(c)	$f(1.61255)=-0.001166022687 \ldots, f(1.61265)=0.0004942645692 \ldots$ Sign change (and as $\mathrm{f}(x)$ is continuous) therefore a root α lies in the interval $[1.61255,1.61265] \Rightarrow \alpha=1.6126(4 \mathrm{dp})$	M1A1
		[2] 7

(a) M1: Attempts to evaluate both $f(1.5)$ and $f(2)$ and finds at least one of $f(1.5)=$ awrt -1.8 or truncated -1.7
or $f(2)=8$ Must be using this interval or a sub interval e.g.[1.55, 1.95] not interval which goes outside the given interval such as [1.6, 2.1]
A1: both $f(1.5)=$ awrt -1.8 or truncated -1.7 and $f(2)=8$, states sign change $\{$ or $f(1.5)<0<f(2)$
or $\mathrm{f}(1.5) \mathrm{f}(2)<0\}$ or $\mathrm{f}(1.5)<0$ and $\mathrm{f}(2)>0$; and conclusion e.g. therefore a root α [lies in the interval [1.5, 2]]or "so result shown" or qed or "tick" etc...
(b) M1: An attempt to substitute $x_{0}=1.5$ into the iterative formula
e.g. see $\left(5-\frac{1}{2}(1.5)\right)^{\frac{1}{3}}$. Or can be implied by $x_{1}=$ awrt 1.6

A1: $x_{1}=1.6198$ This exact answer to $\mathbf{4}$ decimal places is required for this mark
A1: $x_{2}=$ awrt 1.6122 and $x_{3}=$ awrt 1.6126 (so e.g. 1.61216 and 1.6126498 would be acceptable here)
(c) M1: Choose suitable interval for x, e.g. $[1.61255,1.61265]$ and at least one attempt to evaluate $\mathrm{f}(x)$.

A minority of candidate may choose a tighter range which should include1.61262 (alpha to 5dp),
e.g. $[1.61259,1.61263]$ This would be acceptable for both marks, provided the conditions for the A mark are met.
A1: needs (i) both evaluations correct to 1 sf , (either rounded or truncated) e.g. -0.001 and 0.0005 or 0.0004
(ii) sign change stated and
(iii)some form of conclusion which may be :
$\Rightarrow \alpha=1.6126$ or "so result shown" or qed or tick or equivalent
N.B. $\mathrm{f}(1.61264)=0.0003$ (to 1 sf$)$

$\mathbf{1}^{\text {st }}$ M1: Differentiates implicitly to include either $\pm k y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $\pm 3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$.
(Ignore $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)$ at start and omission of $=0$ at end.)
$\mathbf{1}^{\text {st }}$ A1: $\quad x^{3} \rightarrow \underline{3 x^{2}}$ and $-x+y^{3}-11 \rightarrow \underline{-1+3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}}$ (so the -11 should have gone) and $=0$ needed here or implied by further work. Ignore $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)$ at start.
$\mathbf{2}^{\text {nd }}$ M1: An attempt to apply the product rule: $-3 x y \rightarrow-\left(3 y+3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)$ or $\pm 3 y \pm 3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ o.e.
$\mathbf{3}^{\text {rd }}$ M1: Correct method to collect two (not three) $\mathrm{d} y / \mathrm{d} x$ terms and to evaluate the gradient at $x=2 y=-1$ (This stage may imply the earlier " $=0$ ")
$4^{\text {th }}$ dM1: This is dependent on all previous method marks
Uses line equation with their $\frac{14}{3}$. May use $y=\frac{14}{3} x+c$ and attempt to evaluate c by substituting $x=2$ and $y=-1$.
(May be implied by correct answer)
$\mathbf{2}^{\text {nd }} \mathbf{A 1 :}$ Any positive or negative whole number multiple of $14 x-3 y-31=0$ is acceptable. Must have $=0$.
N.B. If anyone attempts the question using $\frac{\mathrm{d} x}{\mathrm{~d} y}$ instead of $\frac{\mathrm{d} y}{\mathrm{~d} x}$, please send to review

Notes

M1: Applies the Quotient rule, a form of which appears in the formula book, to $\frac{\cos 2 \theta}{1+\sin 2 \theta}$
If the formula is quoted it must be correct. There must have been some attempt to differentiate both terms.
If the rule is not quoted nor implied by their working, meaning that terms are written out
$u=\cos 2 \theta, v=1+\sin 2 \theta, u^{\prime}=. ., v^{\prime}=\ldots$ followed by their $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$, then only accept answers of the form
$\underline{(1+\sin 2 \theta) A \sin 2 \theta-\cos 2 \theta \times(B \cos 2 \theta)}$

$$
(1+\sin 2 \theta)^{2}
$$

brackets for the M mark. If double angle formulae are used give marks for correct work.
Alternatively applies the product rule with $u=\cos 2 \theta, v=(1+\sin 2 \theta)^{-1}$
If the formula is quoted it must be correct. There must have been some attempt to differentiate both terms.
If the rule is not quoted nor implied by their working, meaning that terms are written out
$u=\cos 2 \theta, v=(1+\sin 2 \theta)^{-1}, u^{\prime}=. ., v^{\prime}=\ldots$ followed by their $v u^{\prime}+u v^{\prime}$,
then only accept answers of the form $(1+\sin 2 \theta)^{-1} \times A \sin 2 \theta \pm \cos 2 \theta \times(1+\sin 2 \theta)^{-2} \times B \cos 2 \theta$.
Condone "invisible brackets" for the M. If double angle formulae are used give marks for correct work.
A1: Any fully correct (unsimplified) form of $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ If double angle formulae are used give marks for correct work. Accept versions of $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=\frac{-2 \sin 2 \theta(1+\sin 2 \theta)-2 \cos ^{2} 2 \theta}{(1+\sin 2 \theta)^{2}}$ for use of the quotient rule or versions of $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=(1+\sin 2 \theta)^{-1} \times-2 \sin 2 \theta+\cos 2 \theta \times(-1) \times(1+\sin 2 \theta)^{-2} \times 2 \cos 2 \theta$ for use of the product rule.
M1: Applies $\sin ^{2} 2 \theta+\cos ^{2} 2 \theta \equiv 1$ or $-2 \sin ^{2} 2 \theta-2 \cos ^{2} 2 \theta \rightarrow-2$ correctly to eliminate squared trig. terms from the numerator to obtain an expression of the form $k \sin 2 \theta+\lambda$ where k and λ are constants (including 1) If double angle formulae have been used give marks only if correct work leads to answer in correct form. (If in doubt, send to review)
A1: Need to see factorisation of numerator then answer, which is cso
so $\frac{-2}{1+\sin 2 \theta}$ or $\frac{a}{1+\sin 2 \theta}$ and $a=-2$, with no previous errors

Notes
(a) M1: Gives $\pm \lambda(2 x+3)^{13}$ where λ is a constant or $\pm \mu\left(x+\frac{3}{2}\right)^{13}$

A1: Coefficient does not need to be simplified so is awarded for $\frac{(2 x+3)^{13}}{(13)(2)}$ or for $\frac{2^{12}}{13}\left(x+\frac{3}{2}\right)^{13}$ i.e. $\frac{4096}{13}\left(x+\frac{3}{2}\right)^{13}$

Ignore subsequent errors and condone lack of constant c
N.B. If a binomial expansion is attempted, then it needs all thirteen terms to be correctly integrated for M1A1
(b) M1: Gives $\pm \mu \ln \left(4 x^{2}+1\right)$ where μ is a constant or $\pm \mu \ln \left(x^{2}+\frac{1}{4}\right)$ or indeed $\pm \mu \ln \left(k\left(4 x^{2}+1\right)\right)$

May also be awarded for $\frac{5}{8} \ln (4 x+1)$ or $\frac{5}{8} \ln \left(x^{2}+1\right)$, where coefficient $5 / 8$ is correct and there is a slip writing down the bracket.
It may also be given for $\pm \mu \ln (u)$ where u is clearly defined as ($4 x^{2}+1$) or equivalent substitutions such as $\pm \mu \ln (4 u+1)$ where $u=x^{2}$
A1: $\frac{5}{8} \ln \left(4 x^{2}+1\right)$ or $\frac{5}{8} \ln \left(x^{2}+\frac{1}{4}\right)$ o.e. The modulus sign is not needed but allow $\frac{5}{8} \ln \left|4 x^{2}+1\right|$
Also allow $0.625 \ln \left(4 x^{2}+1\right)$ and condone lack of constant c
N.B. $\frac{5}{8} \ln 4 x^{2}+1$ with no bracket can be awarded M1A0

Question Number	Scheme		Marks
5.	$\begin{aligned} \left(8+27 x^{3}\right)^{\frac{1}{3}} & =\underline{(8)^{\frac{1}{3}}}\left(1+\frac{27 x^{3}}{8}\right)^{\frac{1}{3}}=\underline{2}\left(1+\frac{27 x^{3}}{8}\right)^{\frac{1}{3}} \\ & =\{2\}\left[1+\left(\frac{1}{3}\right)\left(k x^{3}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(k x^{3}\right)^{2}+\ldots\right] \\ & =\{2\}\left[1+\left(\frac{1}{3}\right)\left(\frac{27 x^{3}}{8}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(\frac{27 x^{3}}{8}\right)^{2}+\ldots\right] \\ & =2\left[1+\frac{9}{8} x^{3} ;-\frac{81}{64} x^{6}+\ldots\right] \\ & =2+\frac{9}{4} x^{3} ;-\frac{81}{32} x^{6}+\ldots \end{aligned}$	$(8)^{\frac{1}{3}}$ or $\underline{2}$	B1 M1 A1 A1; A1 [5]
Method 2	$\left\{\left(8+27 x^{3}\right)^{\frac{1}{3}}\right\}=(8)^{\frac{1}{3}}+\left(\frac{1}{3}\right)(8)^{-\frac{2}{3}}\left(27 x^{3}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(8)^{-\frac{5}{3}}\left(27 x^{3}\right)^{2}$ $(8)^{\frac{1}{3}}$ or 2 Any two of three (un-simplified or simplified) terms correct All three (un-simplified or simplified) terms correct. $=2+\frac{9}{4} x^{3} ;-\frac{81}{32} x^{6}+\ldots$		B1 M1 A1 A1; A1 [5] 5

Method 1:

B1: $(8)^{\frac{1}{3}}$ or $\underline{2}$ outside brackets then isw or $(8)^{\frac{1}{3}}$ or $\underline{2}$ as candidate's constant term in their binomial expansion.
M1: Expands $\left(\ldots+k x^{3}\right)^{\frac{1}{3}}$ to give any 2 terms out of 3 terms correct for their k simplified or un-simplified
Eg: $1+\left(\frac{1}{3}\right)\left(k x^{3}\right)$ or $\left(\frac{1}{3}\right)\left(k x^{3}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(k x^{3}\right)^{2}$ or $1+\ldots \ldots .+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(k x^{3}\right)^{2} \quad$ [Allow $\left(\frac{1}{3}-1\right)$ for $\left(-\frac{2}{3}\right)$]
where $k \neq 1$ are acceptable for M1. Allow omission of brackets. [k will usually be 27, 27/8 or 27/2...]
A1: A correct simplified or un-simplified $1+\left(\frac{1}{3}\right)\left(k x^{3}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(k x^{3}\right)^{2}$ expansion with consistent $\left(k x^{3}\right)$ \{or $(k x)$ - for special case only $\}$. Note that $k \neq 1$. The bracketing must be correct and now need all three terms correct for their k.

A1: $2+\frac{9}{4} x^{3}$ - allow $2+2.25 x^{3}$ or $2+2 \frac{1}{4} x^{3}$
A1: $-\frac{81}{32} x^{6}$ allow $-2.53125 x^{6}$ or $-2 \frac{17}{32} x^{6}$ (Ignore extra terms of higher power)

Method 2:

B1: $(8)^{\frac{1}{3}}$ or 2
M1: Any two of three (un-simplified or simplified) terms correct - condone missing brackets
A1: All three (un-simplified or simplified) terms correct. The bracketing must be correct but it is acceptable for them to recover this mark following "invisible" brackets.
A1A1: as above.
Special case (either method) uses \boldsymbol{x} instead of x^{3} throughout to obtain $=2+\frac{9}{4} x ;-\frac{81}{32} x^{2}+\ldots$ gets B1M1A1A0A0

Question Number	Scheme	Marks
6. (a)	$\frac{5-4 x}{(2 x-1)(x+1)} \equiv \frac{A}{(2 x-1)}+\frac{B}{(x+1)} \quad \text { so } \quad 5-4 x \equiv A(x+1)+B(2 x-1)$	B1
	Let $x=-1,9=B(-3) \Rightarrow B=$ Let $x=\frac{1}{2}, 3=A\left(\frac{3}{2}\right) \Rightarrow A=$	M1
	$A=2 \text { and } B=-3 \quad \text { or }\left\{\frac{5-4 x}{(2 x-1)(x+1)} \equiv \frac{2}{(2 x-1)}-\frac{3}{(x+1)}\right\}$	A1
$\stackrel{\text { (b) }}{\text { (i), (ii) }}$	$\int \frac{1}{y} \mathrm{~d} y=\int \frac{5-4 x}{(2 x-1)(x+1)} \mathrm{d} x$	B1
	$=\int \frac{2}{(2 x-1)}-\frac{3}{(x+1)} \mathrm{d} x=C \ln (2 x-1)+D \ln (x+1)$	M1
	$=\frac{" 2}{2} \ln (2 x-1)-$ "3" $\ln (x+1)$	A1ft
	$\ln y=\ln (2 x-1)-3 \ln (x+1)+c$	A1
Method 1 for (ii)	$\ln 4=\ln (2(2)-1)-3 \ln (2+1)+c \quad \Rightarrow c=\{\ln 36\}$	M1
	$\ln y=\ln (2 x-1)-3 \ln (x+1)+\ln 36 \quad \text { so } \ln y=\ln \left(\frac{36(2 x-1)}{(x+1)^{3}}\right) \text { So } y=\frac{36(2 x-1)}{(x+1)^{3}}$	M1 A1 ${ }_{\text {[7] }}$
Method 2 for (ii)	Solution as Method 1 up to $\ln y=\ln (2 x-1)-3 \ln (x+1)+c$ so first four marks as before	B1M1A1A1
	Writes $y=\frac{A(2 x-1)}{(x+1)^{3}}$ as general solution which would earn the $3^{\text {rd }} \mathrm{M} 1$ mark. Then may substitute to find their constant A, which would earn the $2^{\text {nd }} \mathrm{M} 1$ mark.	M1 M1
	Then A1 for $y=\frac{36(2 x-1)}{(x+1)^{3}}$ as before.	A1
		[7] 10

Notes

(a) B1: Forming the linear identity (this may be implied).

Note: $A \& B$ are not assigned in this question - so other letters may be used
M1: A valid method to find the value of one of either their A or their B.
A1: $A=2$ and $B=-3$ (This is sufficient without rewriting answer provided it is clear what A and B are)
Note: In part (a), $\left\{\frac{5-4 x}{(2 x-1)(x+1)} \equiv\right\} \frac{2}{(2 x-1)}-\frac{3}{(x+1)}$, from no working, is B1M1A1 (cover-up rule).
(b) You can mark parts (b)(i) and (b)(ii) together.
(i) B1: Separates variables as shown. (Can be implied.) Need both sides correct, but condone missing integral signs.

M1: Uses partial fractions on RHS and obtains two log terms after integration. The coefficients may be wrong e.g. $2 \ln (2 x-1)$ or may follow their wrong partial fractions. Ignore LHS for this mark.
A1ft: RHS correct integration for their partial fractions - do not need LHS nor $+c$ for this mark
A1 : All three terms correct (LHS and RHS) including $+c$.
(ii) M1: Substitutes $y=4$ and $x=2$ into their general solution with a constant of integration to obtain $c=$.

M1: A fully correct method of removing the logs - must have a constant of integration which must be treated Correctly. Must have had $\ln y=$ \qquad ...earlier
A1: $y=\frac{36(2 x-1)}{(x+1)^{3}}$ isw.
NB If Method 2 is used the third method mark is earned at the end of part (i), then the second method mark is earned when the values are substituted.
Special case1: A common error using method 2:
$y=\frac{(2 x-1)}{(x+1)^{3}}+A$, then $4=\frac{(3)}{(3)^{3}}+A$ so $A=$ would earn M 1 (substitution); M0 (not fully correct removing logs); A0

Special case2: A possible error using method 1 or 2:
$y=(2 x-1)-3(x+1)+A$, then $4=3-9+A$ so $A=$ would earn M0 (too bad an error); M0 (not fully correct removing logs); A0
i.e. M0M0A0

If there is no constant of integration they are likely to lose the last four marks.

Notes

Method 2 is less likely and the notes apply to Method 1.
(a) M1: Brings $(x+1)$ to the LHS and multiplies out by y
or if x and y swapped first $(y+1)$ to the LHS and multiplies out by x
M1: A full method to make x (or swapped y) the subject by collecting terms and factorising.
A1: $\frac{x+5}{3-x}$ or equivalent e.g. $-\frac{x+5}{x-3}$ or $\frac{-x-5}{x-3}$ or $-1+\frac{8}{3-x}$ etc Ignore LHS.
Does not need to include domain i.e does not need statement that $x \in \square, x \neq 3$ Should now be in x, not y, for this mark.
N.B. Use of quotient rule to differentiate and to find f^{\prime} is M0M0A0. This is NOT a misread.
(b) M1: An attempt to substitute f into itself. e.g. $\mathrm{ff}(x)=\frac{3 \mathrm{f}(x)-5}{\mathrm{f}(x)+1}$. Squaring $\mathrm{f}(x)$ is M0.

Allow $\mathrm{ff}(x)=\frac{3 \mathrm{f}(x)-5}{x+1}$ or $\mathrm{ff}(x)=\frac{3 x-5}{\mathrm{f}(x)+1}$ for M1A0
A1: Correct expression. This mark implies the previous method mark.
M1: An attempt to combine each of the numerator and the denominator into single rational fraction with same common denominator
A1: See $\frac{x-5}{x-1}$ Does not need to include domain or statement that $x \in \square, x \neq-1, x \neq 1$
NB If they use a mixture of methods 1 and 2 then mark accordingly - attempt M1, correct A1, combined into single rational function M1 then answer is A1
so may see $=\frac{3\left(3-\frac{8}{x+1}\right)-5}{\left(3-\frac{8}{x+1}\right)+1}$ or $3-\frac{8}{\left(\frac{3 x-5}{x+1}\right)+1}$
(c) M1: Full method of inserting $g(2)$ (i.e. -2) into $\mathrm{f}(x)$. Or substitutes 2 into $\mathrm{fg}(x)=\frac{3\left(x^{2}-3 x\right)-5}{x^{2}-3 x+1}$

A1: cao
(d) M1: Full method to establish the minimum of g. (Or correct answer with no method)
e.g.: $(x \pm \alpha)^{2}+\beta$ leading to $g_{\min }=\beta$.

Or finding derivative, setting to zero, finding $x(=1.5)$ and then finding $g(1.5)$ in order to find the minimum.
Or obtaining roots of $x=0,3$ and using symmetry to obtain $g_{\min }=g(1.5)=\beta$.
Or listing values leading to $g_{\text {min }}=g(1.5)=\beta$.
This mark may also be implied by -2.25 .
B1: For finding either the correct minimum value of g (can be implied by $g(x) \geqslant-2.25$ or $g(x)>-2.25$) or for stating that $g(5)=10$ or finding the value 10 as a maximum
A1: $\quad-2.25 \leqslant \mathrm{~g}(x) \leqslant 10$ or $-2.25 \leqslant y \leqslant 10$ or $-2.25 \leqslant \mathrm{~g} \leqslant 10$.
Note that: $-2.25 \leqslant x \leqslant 10$ (wrong variable)is A0; $-2.25<y<10$ (wrong inequality) is A 0 ;
$-2.25 \leqslant \mathrm{f} \leqslant 10$ (wrong function) is A0; Accept [$-2.25,10$] (correct notation) for A1
but not $(-2.25,10)$ (strict inequality) which is A0
A correct answer with no working gains M1 B1 A1 i.e. 3/3

B1: $\quad \frac{\mathrm{d} V}{\mathrm{~d} r}=4 \pi r^{2}$. This may be stated or used and need not be simplified
Applies $12000=\frac{4}{3} \pi r^{3}$ and rearranges to find r using division then cube root with accurate algebra
May state $\quad r=\sqrt[3]{\frac{3 V}{4 \pi}}$ then substitute $V=12000$ later which is equivalent. r does not need to be evaluated.
M1: Uses chain rule correctly so $\frac{1}{\left(\text { their } \frac{\mathrm{d} V}{\mathrm{~d} r}\right)} \times 250$
dM1: Substitutes their r correctly into their equation for $\frac{\mathrm{d} r}{\mathrm{~d} t}$ This depends on the previous method mark
A1: awrt 0.099 (Units may be ignored) If this answer is seen, then award A1 and isw.
Premature approximation usually results in all marks being earned prior to this one.

Notes

(a) M1: Finds y for $x=4,5,6,7,8$ and 9. Need six y values for this mark. May leave as on middle row of table give mark if correct unsimplified answers given, then isw if errors appear later. If given as decimals only, without prior expressions, need to be accurate to 2 significant figures. (Allow one slip) May not appear as table, but only in trapezium rule.
B1: Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ or $h=1$ stated. This is independent of the method marks
M1: For structure of $\{\ldots \ldots \ldots \ldots \ldots\}$ ft their y values and allow for 5 or $6 y$ values so may follow wrong h or table which has x from 5 to 9 or from 4 to $8 \mathrm{NB}\{4+9+2(5+6+7+8)\}$ is M0
A1: 65.69 N.B. Wrong brackets e.g. $\frac{1}{2} \times 1 \times\left(e^{2}+e^{3}\right)+2\left(e^{\sqrt{5}}+e^{\sqrt{6}}+e^{\sqrt{7}}+e^{\sqrt{8}}\right)$ is M 0 unless followed by correct answer 65.69 which implies M1A1

Special case: uses five ordinates (i.e. four strips)

x	4	5.25	6.5	7.75	9
y	e^{2}	$\mathrm{e}^{\sqrt{5.25}}$	$\mathrm{e}^{\sqrt{6.5}}$	$\mathrm{e}^{\sqrt{7.75}}$	e^{3}
	$7.389056 \ldots$	$9.887663 .$.	$12.800826 .$.	$16.181719 .$.	$20.085536 \ldots$

Then

$$
\frac{1}{2} \times \frac{5}{4} \times\{\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\}
$$

Giving $\frac{1}{2} \times \frac{5}{4} \times\left\{\mathrm{e}^{2}+\mathrm{e}^{3}+2\left(\mathrm{e}^{\sqrt{5.25}}+\mathrm{e}^{\sqrt{6.5}}+\mathrm{e}^{\sqrt{7.75}}\right)\right\}=65.76$
This complete method for special case earns M0 B0 M1 A1 i.e. 2/4
(b) B1: States or uses $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}}$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}=2 u$

M1: Obtains $\pm \lambda \int u \mathrm{e}^{u} \mathrm{~d} u$ for a constant value λ
A1: Obtains $2 \int u \mathrm{e}^{u} \mathrm{~d} u$
M1: An attempt at integration by parts in the right direction on $\lambda u \mathrm{e}^{u}$. This mark is implied by the correct answer. There is no need for limits. If the rule is quoted it must be correct. A version of the rule appears in the formula booklet. Accept for this mark expressions of the form $\int u \mathrm{e}^{u} \mathrm{du}=u \mathrm{e}^{u}-\int \mathrm{e}^{u} \mathrm{~d} u$
A1: $\lambda u \mathrm{e}^{u} \rightarrow \lambda u \mathrm{e}^{u}-\lambda \mathrm{e}^{u}$. (Candidates just quoting this answer earn M1A1)
ddM1: Substitutes limits of 3 and 2 in u (or 9 and 4 in x) in their integrand and subtracts the correct way round.
(Allow one slip) This mark depends on both previous method marks having been earned
A1: Obtains $4 e^{3}-2 e^{2}$ or $2 e^{2}(2 e-1)$ with terms collected. If then given as a decimal isw.

Way 3 10c)	$\begin{aligned} & \text { "t" method } \quad\left\{y=\ln \left[\tan \left(\frac{1}{2} x\right)\right]-3 \sin x \Rightarrow\right\} \frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{cosec} x-3 \cos x \\ & \left\{\frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow\right\} \operatorname{cosec} x-3 \cos x=0 \Rightarrow \frac{1}{\sin x}-3 \cos x=0 \\ & \Rightarrow \frac{1+t^{2}}{2 t}-3 \frac{1-t^{2}}{1+t^{2}}=0 \text { so } t^{4}+6 t^{3}+2 t^{2}-6 t+1=0 \\ & t=0.1845 \text { or } 0.6885 \end{aligned}$ So $x=\{0.364863 \ldots, 1.205932 \ldots\}$	B1 M1 M1 A1 A1 A1 [6]

Notes

(a) M1: This mark is for the underlined equation in either form

$$
\underline{\sin A \cos A+\cos A \sin A \text { or } \quad \sin A \cos A+\sin A \cos A}
$$

A1: For this mark need to see :
$\sin 2 A$ at the start of the proof, or as part of a conclusion
$\sin (A+A)=$ at the start
$=\underline{\sin A \cos A+\cos A \sin A}$ or $\underline{\sin A \cos A+\sin A \cos A}$ $=2 \sin A \cos A$ at the end
(b)M1: For expression of the form $\frac{ \pm k \sec ^{2}\left(\frac{1}{2} x\right)}{\tan \left(\frac{1}{2} x\right)}$, where k is constant (could even be 1)
A1: Correct differentiation so $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{1}{2} \sec ^{2}\left(\frac{1}{2} x\right)}{\tan \left(\frac{1}{2} x\right)}$

Way 1A:

dM1: Use both $\tan \left(\frac{1}{2} x\right)=\frac{\sin \left(\frac{1}{2} x\right)}{\cos \left(\frac{1}{2} x\right)}$ and $\sec ^{2}\left(\frac{1}{2} x\right)=\frac{1}{\cos ^{2}\left(\frac{1}{2} x\right)}$ in their differentiated expression. This may be implied.
This depends on the previous Method mark.
A1*: Simplify the fraction, use double angle formula, see $\frac{1}{\sin x}$ and obtain correct answer with completely correct work and no errors seen (NB Answer is given)
Way 1B
dM 1 : Use both $\sec ^{2}\left(\frac{1}{2} x\right)=1+\tan ^{2}\left(\frac{1}{2} x\right)$ and $\tan \left(\frac{1}{2} x\right)=\frac{\sin \left(\frac{1}{2} x\right)}{\cos \left(\frac{1}{2} x\right)}$
A1*: Simplify the fraction, use double angle formula, see $\frac{1}{\sin x}$ and obtain correct answer with completely correct work and no errors seen (NB Answer is given)
Way 2:
M1:Split into $\left\{y=\ln \left[\sin \left(\frac{1}{2} x\right)\right]-\ln \left[\cos \left(\frac{1}{2} x\right)\right] \Rightarrow\right\}$ then differentiate to give $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k \cos \left(\frac{1}{2} x\right)}{\sin \left(\frac{1}{2} x\right)}-\frac{c \sin \left(\frac{1}{2} x\right)}{\cos \left(\frac{1}{2} x\right)}$
A1: Correct answer $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{1}{2} \cos \left(\frac{1}{2} x\right)}{\sin \left(\frac{1}{2} x\right)}-\frac{-\frac{1}{2} \sin \left(\frac{1}{2} x\right)}{\cos \left(\frac{1}{2} x\right)}$
M1: Obtain $=\frac{\cos ^{2}\left(\frac{1}{2} x\right)+\sin ^{2}\left(\frac{1}{2} x\right)}{2 \sin \left(\frac{1}{2} x\right) \cos \left(\frac{1}{2} x\right)} \quad$ A1*: As before
Way 3:
Alternative method: This is rare, but is acceptable. Must be completely correct.
Quotes $\int \operatorname{cosec} x \mathrm{~d} x=\ln \left(\tan \left(\frac{1}{2} x\right)\right)$ and follows this by $\frac{\mathrm{d}}{\mathrm{d} x}\left[\tan \left(\frac{1}{2} x\right)\right]=\operatorname{cosec} x$ gets $4 / 4$
(c) B1: Correct differentiation - so see $\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{cosec} x-3 \cos x$

M1: Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and uses $\operatorname{cosec} x=\frac{1}{\sin x}$
Way 1 :
M1: Rearranges and uses double angle formula to obtain $\sin 2 x=k$, where $-1<k<1$ and $k \neq 0$
(This may be implied by $a+b \sin 2 x=0$ followed by correct answer)
A1: $\sin 2 x=\frac{2}{3}$ (This may be implied by correct answer)
A1: Either awrt 0.365 or awrt 1.206 (answers in degrees lose both final marks)
A1: Both awrt 0.365 and awrt 1.206
Ignore y values. Ignore extra answers outside range. Lose the last A mark for extra answers in the range.
Way 2:
M1: Obtain quadratic in $\sin x$ or in $\cos x$. Condone $\operatorname{cosec} x-9 \cos ^{2} x=0$ as part of the working A1 A1 A1: See scheme

Way 3:
This method is unlikely and uses $t=\tan \left(\frac{x}{2}\right)$. See scheme for detail

Notes

(a) M1: At least one term differentiated correctly

A1: Correct differentiation of both terms
M1: Sets $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 0 and applies a correct method for eliminating the exponentials e^{x} to reach $x=$
(At this stage the RHS may include $\ln \left(\mathrm{e}^{a}\right)$ term but should include no x terms)
A1: $x_{P}=\frac{1}{2} a$ after correct work
ddM1: (Needs both previous M marks) Substitutes their x-coordinate into y (not into $\frac{\mathrm{d} y}{\mathrm{~d} x}$)
A1: $y_{P}=-2 \mathrm{e}^{-\frac{a}{2}}$ given as one term
(b) Parts (b) and (c) may be marked together.

Methods 1, 2and 3:
M1: Put $y=0$ and attempt to obtain $\mathrm{e}^{\mathrm{f}(x)}=k$ e.g. $\mathrm{e}^{a \pm \lambda x}=3$ (Method 1) or $\mathrm{e}^{\lambda x}=\frac{\mathrm{e}^{a}}{3}($ Method 2$)$ or $3 \mathrm{e}^{-2 \mathrm{e}^{x} x}=\mathrm{e}^{a}$
(Method 3) Must have all x terms on one side of the equation for any of these methods
dM1: This depends on previous M mark. Take logs correctly.
e.g. $a \pm \lambda x=\ln 3($ Method 1$)$ or $\lambda x=a-\ln 3($ Method 2$)$ or $\ln 3+" 2 " x=a($ Method 3$)$

A1: cao $x_{Q}=\frac{a-\ln 3}{2}$ (must be exact)

Method 4:

M1: Puts $\mathrm{e}^{a-3 x}=3 \mathrm{e}^{-x}$ then takes lns correctly (see scheme) $\quad a-3 x=\ln 3-x$
dM 1 : Collects x terms on one side
A1: $x_{Q}=\frac{a-\ln 3}{2}$ cao (must be exact to answer requirements of (c))
(c) B1: Correct overall shape, so $y \geq 0$ for all x, curve crossing positive y axis and small portion seen to left of y axis, meets x axis once, one maximum turning point
B1: Cusp at $x=x_{Q}$ (not zero gradient) and no appearance of curve clearly increasing as x becomes large
B1: Either writes full coordinates $\left(0, \mathrm{e}^{a}-3\right)$ in the text or $\left(0, \mathrm{e}^{a}-3\right)$ or $\mathrm{e}^{a}-3$ marked on the y-axis or even ($\mathrm{e}^{a}-3,0$) if marked on the y axis (must be exact) - allow $\left|\mathrm{e}^{a}-3\right|$ i.e. allow modulus sign, Can be earned without the graph.
No requirement for $x_{Q}=\frac{a-\ln 3}{2}$ to be repeated for this mark. It has been credited in part (b)

Notes

(a) B1: $\quad R=\sqrt{5}$ or awrt 2.24 no working needed - must be in part (a)

M1: $\tan \alpha=\frac{1}{2}$ or $\tan \alpha=2$ or $\sin \alpha=\frac{1}{\sqrt{5}}$ or $\sin \alpha=\frac{2}{\sqrt{5}}$ or $\cos \alpha=\frac{2}{\sqrt{5}}$ or $\cos \alpha=\frac{1}{\sqrt{5}}$ and attempt to find alpha. Method mark may be implied by correct alpha.
A1: accept $\alpha=$ awrt 26.57 ; also accept $\sqrt{5} \sin (\theta+26.57)$ - must be in part (a)
Answers in radians (0.46) are A0
(b) Way 1:

M1: Uses distance between two lines is 4 (or half distance is 2) states $4 \sin \theta+2 \cos \theta=4$ or shows sketch (may be on Figure 4 on question paper) with some trigonometry
A1*: Shows sketch with implication of two right angled triangles (may be on Figure 4 on question paper) and follows $4 \sin \theta+2 \cos \theta=4$ by stating printed answer or equivalent (given in the mark scheme) and no errors seen.
Way 2:
on scheme (not a common method)
Way 3:
They may state and verify the result provided the work is correct and accurate.
M1: Verification with correct accurate work e.g. $2 \times \frac{x}{4}+\frac{4-x}{2}=2$, with x shown on figure
A1: Needs conclusion that $2 \sin \theta+\cos \theta=2$
Substitution of 36.9 (obtained in (c) is a circular argument and is MOA0)
(c) Way 1:

M1: $\sin (\theta+$ their $\alpha)=\frac{2}{\text { their } R} \quad$ (Uses part (a) to solve equation)
M1: $\quad \theta=\arcsin \left(\frac{2}{\text { their } R}\right)$ - their $\alpha \quad$ (operations undone in the correct order with subtraction)
A1: awrt 36.9 (answer in radians is 0.644 and is A0)

Way 2 :

M1: Squares both sides, uses appropriate trig identities and reaches $\tan \theta=\frac{3}{4}$ or $\sin \theta=\frac{3}{5}$ or $\cos \theta=\frac{4}{5}$ or $\sin 2 \theta=\frac{24}{25}$
\{One example is shown in the scheme. Another popular one is
$2 \sin \theta=2-\cos \theta \rightarrow 4\left(1-\cos ^{2} \theta\right)=4-4 \cos \theta+\cos ^{2} \theta \rightarrow 5 \cos ^{2} \theta-4 \cos \theta=0$ and so $\cos \theta=\frac{4}{5}$ for M1\}
M1: $\quad \theta=\arctan \frac{3}{4}$ or other correct inverse trig value e.g. $\arcsin \theta\left(\frac{3}{5}\right)$ or $\operatorname{arcos} \theta\left(\frac{4}{5}\right)$
A1: awrt 36.9 (answer in radians is 0.644 and is A0)
(d) Way 1: (Most popular)

B1: States $x=\frac{2}{\tan \theta}$, where x (not defined in the question) is the non-overlapping length of rectangle
M1: Writes equation $h+\frac{2}{\tan \theta}=4$ - must be this expression or equivalent e.g. $\tan \theta=\frac{2}{4-h}$ gets B1 M1
A1: accept decimal which round to 1.3 or the exact answer i.e. $\frac{4}{3}$ (may follow slight inaccuracies in earlier angle being rounded wrongly)
N.B. There is a variation which states $\sin \theta=\frac{2 \cos \theta}{4-h}$ or $\frac{\sin \theta}{2}=\frac{\sin (90-\theta)}{4-h}$ for B1 M1 then A1 as before

Way 2: (Less common)
B1 : States $y=\frac{4}{\sin \theta}$, where y (not defined in question) is the non-overlapping length of two rectangles
M1: Writes equation $h+\frac{4}{\sin \theta}=8$ - must be this expression or equivalent e.g. $\sin \theta=\frac{4}{8-h}$ gets B1 M1
A1: as in Way 1
There are other longer trig methods - possibly using Pythagoras for showing that $\boldsymbol{h}=1.3$ to 2 sf. If the method is clear award B1M1A1 - otherwise send to review.

Notes

Throughout - allow vectors to be written as a row, with commas, as this is another convention.
(a) M1: Finds, or implies, correct value of λ for at least one of the two given points

A1: At least one of a or b correct
A1: Both a and b correct
(b) M1: Subtracts the position vector of A from that of B or the position vector of B from that of A. Allow any notation. Even allow coordinates to be subtracted. Follow through their a and b for this method mark.
A1: Need correct answer : so $\overrightarrow{A B}=4 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$ or $\overrightarrow{A B}=\left(\begin{array}{r}4 \\ 2 \\ -2\end{array}\right)$ or (4, 2, -2) This is not ft .
(c) Way 1:

M1: Subtracts the position vector of A from that of C or the position vector of C from that of A. Allow any notation. Even allow coordinates to be subtracted. Follow through their a for this method mark.
dM1: Applies dot product formula between their $(\overrightarrow{A B}$ or $\overrightarrow{B A})$ and their $(\overrightarrow{A C}$ or $\overrightarrow{C A})$.
A1*: Correctly proves that $C \hat{A} B=30^{\circ}$. This is a printed answer. Must have used $(\overrightarrow{A B}$ with $\overrightarrow{A C})$ or $(\overrightarrow{B A}$ with $\overrightarrow{C A})$ for this mark and must not have changed a negative to a positive to falsely give the answer, that would result in M1M1A0
Do not need to see $\frac{\sqrt{3}}{2}$ but should see equivalent value. Allow $\frac{\pi}{6}$ as final answer.
Way 2:
M1: Finds lengths of $A B, A C$ and $B C$
dM 1 : Uses cosine rule or trig of right angled triangle, either sin, cos or tan
A1: Correct proof that angle $=30$ degrees
(d) M1: Applies $\frac{1}{2}|\overrightarrow{A B}||\overrightarrow{A C}| \sin 30^{\circ}$ - must try to use their vectors (b-a) and (c -a) or state formula and try to use it. Could use vector product. Must not be using $\frac{1}{2}|\overrightarrow{O B}||\overrightarrow{O C}| \sin 30^{\circ}$
A1: $3 \sqrt{3}$ cao - must be exact and in this form (see question)
(e) M1: Realises that $A D$ is twice the length of $A B$ and uses complete method to find one of the points. Then uses one of the three possible starting points on the line (A, B, or the point with position vector $-\mathbf{i}-4 \mathbf{j}+6 \mathbf{k}$) to reach D. See one of the equations in the mark scheme and ft their a or b.

$$
\text { So accept }\left(\overrightarrow{O D_{1}}\right)=\left(\begin{array}{r}
-1 \\
-4 \\
6
\end{array}\right)+5\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right) \quad \text { or }=\left(\begin{array}{r}
1 \\
a \\
5
\end{array}\right)+4\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right) \text { or }=\left(\begin{array}{r}
b \\
-1 \\
3
\end{array}\right)+2\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right)
$$

A1: Accept $(9,1,1)$ or $9 \mathbf{i}+\mathbf{j}+\mathbf{k}$ or $\left(\begin{array}{l}9 \\ 1 \\ 1\end{array}\right)$ cao
M1: Realises that $A D$ is twice the length of $A B$ but is now in the opposite direction so uses one of the three possible starting points to reach D. See one of the equations in the mark scheme and ft their a or b.

So accept $\left(\overrightarrow{O D_{2}}\right)=\left(\begin{array}{r}-1 \\ -4 \\ 6\end{array}\right)-3\left(\begin{array}{r}2 \\ 1 \\ -1\end{array}\right)$ or $=\left(\begin{array}{r}1 \\ a \\ 5\end{array}\right)-2\left(\begin{array}{r}4 \\ 2 \\ -2\end{array}\right) \quad$ or $=\left(\begin{array}{r}b \\ -1 \\ 3\end{array}\right)-3\left(\begin{array}{r}4 \\ 2 \\ -2\end{array}\right)$
A1: Accept $(-7,-7,9)$ or $-7 \mathbf{i}-7 \mathbf{j}+9 \mathbf{k}$ or $\left(\begin{array}{c}-7 \\ -7 \\ 9\end{array}\right)$ cao
NB Many long methods still contain unknown variables x, y and z or λ. These are not complete methods so usually earn M0A0M0A0 on part (e) PTO.

Qu 12(b) using integration by parts

Qu 12 (b) Some return to $\mathrm{V}=\{\pi\} \int 4 \tan ^{2} t \sin ^{2} t \mathrm{~d} t$.There are two ways to proceed and both use integration by parts
(b)

Way 1: $\int\left(\tan ^{2} t \sin ^{2} t\right) \mathrm{d} t=\int\left(\sec ^{2} t-1\right) \sin ^{2} t \mathrm{~d} t \quad \begin{array}{r}\text { Uses } 1+\tan ^{2} t=\sec ^{2} t\end{array}$	M1 M1
$\begin{aligned} \{ & \left.=\sin ^{2} t \tan t-\int 2 \sin t \cos t \tan t \mathrm{~d} t-\int \frac{1-\cos 2 t}{2} \mathrm{~d} t\right\}=\sin ^{2} t \tan t-\frac{3}{2} t+\frac{3}{4} \sin 2 t \\ & =-\left(\frac{3}{4} \tan \left(\frac{\pi}{3}\right)-\left(\frac{\pi}{2}\right)+\frac{3}{4} \sin \left(\frac{2 \pi}{3}\right)\right)-(0) \quad \quad \text { Applies limit of } \frac{\pi}{3} \end{aligned}$	M1 A1 ddM1
$V=4 \pi\left(\frac{9 \sqrt{3}}{8}-\frac{\pi}{2}\right)$ or $\quad \pi\left(\frac{9 \sqrt{3}}{2}-2 \pi\right)$ oe Two term exact answer	A1
Way 2: Try to use parts on $\int\left(\sec ^{2} t-1\right) \sin ^{2} t \mathrm{~d} t$ using $u=\sin ^{2} t$ and $v=\tan t-t$	[6]
Award first two M marks as before Uses $1+\tan ^{2} t=\sec ^{2} t$ and Uses	M1 M1
This needs parts twice and to get down to $=\sin ^{2} t(\tan t-t)-t+\frac{1}{2} \sin 2 t-\frac{t}{2} \cos 2 t+\frac{1}{4} \sin 2 t$	M1A1
Then limits as before to give $V=4 \pi\left(\frac{9 \sqrt{3}}{8}-\frac{\pi}{2}\right)$ or $\pi\left(\frac{9 \sqrt{3}}{2}-2 \pi\right)$ oe	ddM1A1

www.igexams.com

