

Mark Scheme (Results)

January 2012

GCE Core Mathematics C4 (6666) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012 Publications Code UA030313 All the material in this publication is copyright © Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $\frac{|x|^{2}(x^{2} + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c|}{(ax^{2} + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a|, \text{ leading to } x = \dots$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c, q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

January 2012 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$\left\{ \underbrace{\underbrace{\cancel{x}}}_{\cancel{x}} \times \right\} \underbrace{2 + 6y \frac{dy}{dx}}_{\cancel{x}} + \left(\underbrace{6x y + 3x^2 \frac{dy}{dx}}_{\cancel{x}} \right) = \underbrace{8x}_{\cancel{x}}$	
	$\left\{\frac{dy}{dx} = \frac{8x - 2 - 6xy}{6y + 3x^2}\right\}$ not necessarily required.	
	At $P(-1, 1)$, $m(\mathbf{T}) = \frac{dy}{dx} = \frac{8(-1) - 2 - 6(-1)(1)}{6(1) + 3(-1)^2} = -\frac{4}{9}$	dM1 A1 cso
(b)	So, m(N) = $\frac{-1}{-\frac{4}{9}} \left\{ = \frac{9}{4} \right\}$	[5] M1
	N: $y - 1 = \frac{9}{4}(x + 1)$	M1
	N: $9x - 4y + 13 = 0$	A1
		[3] 8
(a)	M1 : Differentiates implicitly to include either $\pm ky \frac{dy}{dx}$ or $3x^2 \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} =\right)$).	
	A1: $(2x+3y^2) \rightarrow \left(\frac{2+6y}{dx}\frac{dy}{dx}\right)$ and $(4x^2 \rightarrow \underline{8x})$. Note: If an extra "sixth" term appears then a	award A0.
	B1 : $6x y + 3x^2 \frac{dy}{dx}$.	
	dM1 : Substituting $x = -1$ and $y = 1$ into an equation involving $\frac{dy}{dx}$. Allow this mark if either	the numerator
	or denominator of $\frac{dy}{dx} = \frac{8x - 2 - 6xy}{6y + 3x^2}$ is substituted into or evaluated correctly.	
	If it is clear, however, that the candidate is intending to substitute $x = 1$ and $y = -1$, then award Candidates who substitute $x = 1$ and $y = -1$, will usually achieve $m(T) = -4$	1 M0.
	Note that this mark is dependent on the previous method mark being awarded.	
	A1: For $-\frac{4}{9}$ or $-\frac{8}{18}$ or -0.4 or awrt -0.44	
	If the candidate's solution is not completely correct, then do not give this mark.	
(b)	M1: Applies $m(N) = -\frac{1}{\text{their } m(T)}$.	
	M1: Uses $y-1 = (m_N)(x-1)$ or finds c using $x = -1$ and $y = 1$ and uses $y = (m_N)x + "c"$,	
	Where $m_N = -\frac{1}{\text{their } m(\mathbf{T})}$ or $m_N = \frac{1}{\text{their } m(\mathbf{T})}$ or $m_N = -\text{their } m(\mathbf{T})$.	
	A1: $9x - 4y + 13 = 0$ or $-9x + 4y - 13 = 0$ or $4y - 9x - 13 = 0$ or $18x - 8y + 26 = 0$ etc.	
	Must be "= 0". So do not allow $9x + 13 = 4y$ etc. $\begin{pmatrix} 6y + 3x^2 \end{pmatrix}$	
	Note: $m_N = -\left(\frac{6y + 3x^2}{8x - 2 - 6xy}\right)$ is MOM0 unless a numerical value is then found for m_N .	

Alternative method for part (a): Differentiating with respect to y $\begin{cases}
\frac{dx}{dy} \\
\frac{dy}{dy} \\
\frac{dy}{$

Question Number	Scheme	Marks
2. (a)	$\int x \sin 3x dx = -\frac{1}{3} x \cos 3x - \int -\frac{1}{3} \cos 3x \{dx\}$	M1 A1
	$= -\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x \{+c\}$	A1
(b)	$\int x^2 \cos 3x dx = \frac{1}{3} x^2 \sin 3x - \int \frac{2}{3} x \sin 3x \{dx\}$	[3] M1 A1
	$= \frac{1}{3}x^{2}\sin 3x - \frac{2}{3}\left(-\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x\right) \{+c\}$	A1 isw
	$\left\{=\frac{1}{3}x^{2}\sin 3x+\frac{2}{9}x\cos 3x-\frac{2}{27}\sin 3x \ \left\{+c\right\}\right\}$ Ignore subsequent working	[3] 6
(a)	M1: Use of 'integration by parts' formula $uv - \int vu'$ (whether stated or not stated) in the correct	direction,
	where $u = x \rightarrow u' = 1$ and $v' = \sin 3x \rightarrow v = k \cos 3x$ (seen or implied), where k is a positive or negative constant. (Allow $k = 1$).	tive
	This means that the candidate must achieve $x(k\cos 3x) - \int (k\cos 3x)$, where k is a consistent cons	tant.
	If x^2 appears after the integral, this would imply that the candidate is applying integration by parts i direction, so M0.	n the wrong
	A1: $-\frac{1}{3}x\cos 3x - \int -\frac{1}{3}\cos 3x \{dx\}$. Can be un-simplified. Ignore the $\{dx\}$.	
	A1: $-\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x$ with/without + c. Can be un-simplified.	
(b)	M1: Use of 'integration by parts' formula $uv - \int vu'$ (whether stated or not stated) in the correct	direction,
	where $u = x^2 \rightarrow u' = 2x$ or x and $v' = \cos 3x \rightarrow v = \lambda \sin 3x$ (seen or implied), where λ is a positive negative constant. (Allow $\lambda = 1$).	ve or
	This means that the candidate must achieve $x^2(\lambda \sin 3x) - \int 2x(\lambda \sin 3x)$, where $u' = 2x$	
	or $x^2(\lambda \sin 3x) - \int x(\lambda \sin 3x)$, where $u' = x$.	
	If x^3 appears after the integral, this would imply that the candidate is applying integration by parts i direction, so M0.	n the wrong
	A1: $\frac{1}{3}x^2 \sin 3x - \int \frac{2}{3}x \sin 3x \{dx\}$. Can be un-simplified. Ignore the $\{dx\}$.	
	A1: $\frac{1}{3}x^2\sin 3x - \frac{2}{3}\left(-\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x\right)$ with/without + c, can be un-simplified.	
	You can ignore subsequent working here. Special Case : If the candidate scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores the first two marks of M1A1 in part (b), then you can award the scores	the final A1
	as a follow through for $\frac{1}{3}x^2 \sin 3x - \frac{2}{3}$ (their follow through part(a) answer).	

Question Number	Scheme	Marks	
3. (a)	$\frac{1}{\left(2-5x\right)^2} = \left(2-5x\right)^{-2} = \underline{\left(2\right)^{-2}} \left(1-\frac{5x}{2}\right)^{-2} = \frac{1}{\underline{4}} \left(1-\frac{5x}{2}\right)^{-2} \qquad \underline{\left(2\right)^{-2}} \text{ or } \frac{1}{\underline{4}}$	<u>B1</u>	
	$= \left\{ \frac{1}{4} \right\} \left[1 + (-2)(**x) + \frac{(-2)(-3)}{2!}(**x)^2 + \dots \right]$ see notes	M1 A1ft	
	$= \left\{\frac{1}{4}\right\} \left[\frac{1 + (-2)\left(-\frac{5x}{2}\right) + \frac{(-2)(-3)}{2!}\left(-\frac{5x}{2}\right)^2 + \dots}{2!} \right]$		
	$= \frac{1}{4} \left[1 + 5x; + \frac{75}{4}x^2 + \right]$ See notes below!		
	$= \frac{1}{4} + \frac{5}{4}x; + \frac{75}{16}x^2 + \dots$	A1; A1 [5]	
(b)	$\left\{\frac{2+kx}{(2-5x)^2}\right\} = (2+kx)\left(\frac{1}{4} + \frac{5}{4}x + \left\{\frac{75}{16}x^2 + \ldots\right\}\right)$ Can be implied by later work even in part (c).	M1	
	x terms: $\frac{2(5x)}{4} + \frac{kx}{4} = \frac{7x}{4}$ giving, $10 + k = 7 \implies k = -3$ k = -3	A1	
(c)	x^2 terms: $\frac{150x^2}{16} + \frac{5kx^2}{4}$	[2] M1	
	So, $A = \frac{75}{8} + \frac{5(-3)}{4} = \frac{75}{8} - \frac{15}{4} = \frac{45}{\underline{8}}$ $\frac{45}{\underline{8}}$ or $\frac{55}{\underline{8}}$ or $\underline{5.625}$	A1	
		[2] 9	
(a)	<u>B1</u> : $(2)^{-2}$ or $\frac{1}{4}$ outside brackets or $\frac{1}{4}$ as candidate's constant term in their binomial expansion.		
	M1: Expands to give a simplified or an un-simplified, (-2)(-3) $(-2)(-3)$ $(-2)(-3)$ $(-2)(-3)$ $(-2)(-3)$ $(-2)(-3)$		
	$1+(-2)(**x)$ or $(-2)(**x)+\frac{(-2)(-3)}{2!}(**x)^2$ or $1+\dots+\frac{(-2)(-3)}{2!}(**x)^2$, where		
	A1: A correct simplified or an un-simplified $1 + (-2)(**x) + \frac{(-2)(-3)}{2!}(**x)^2$ expansion with ca	andidate's	
	follow through $(**x)$. Note that $(**x)$ must be consistent.		
	You would award B1M1A0 for $=\frac{1}{4}\left[\frac{1+(-2)\left(-\frac{5x}{2}\right)+\frac{(-2)(-3)}{2!}(-5x)^2+}{2!}\right]$ because ** is not consistent.		
	<i>Invisible brackets</i> $\left\{\frac{1}{4}\right\}\left[\underbrace{1+(-2)\left(-\frac{5x}{2}\right)+\frac{(-2)(-3)}{2!}\left(-\frac{5x^2}{2}\right)+\dots}{2!}\right]$ is M1A0 unless recovered.		
	A1: For $\frac{1}{4} + \frac{5}{4}x$ (simplified fractions) or Also allow $0.25 + 1.25x$ or $\frac{1}{4} + 1\frac{1}{4}x$.	_	
	Allow Special Case A1 for either SC: $\frac{1}{4} [1+5x;]$ or SC : $K [1+5x+\frac{75}{4}x^2+$		
	A1: Accept only $\frac{75}{16}x^2$ or $4\frac{11}{16}x^2$ or $4.6875x^2$		
	<u>Alternative method</u> : Candidates can apply an alternative form of the binomial expansion. (See	e next page).	

3. (b)	M1: Candidate writes down $(2 + kx)$ (their part (a) answer, at least up to the term in x.)
	$(2+kx)\left(\frac{1}{4}+\frac{5}{4}x+\right)$ or $(2+kx)\left(\frac{1}{4}+\frac{5}{4}x+\frac{75}{16}x^2+\right)$ are fine.
	This mark can also be implied by candidate multiplying out to find two terms (or coefficients) in <i>x</i> . A1: $k = -3$
(c)	M1: Multiplies out their $(2 + kx)\left(\frac{1}{4} + \frac{5}{4}x + \frac{75}{16}x^2 +\right)$ to give exactly two terms (or coefficients) in x^2
	and attempts to find A using a numerical value of k .
	A1: Either $\frac{45}{8}$ or $5\frac{5}{8}$ or 5.625 Note: $\frac{45}{8}x^2$ is A0.
	Alternative method for part (a)
	$(2-5x)^{-2} = (2)^{-2} + (-2)(2)^{-3}(-5x); + \frac{(-2)(-3)}{2!}(2)^{-4}(-5x)^{2}$
	B1: $\frac{1}{4}$ or $(2)^{-2}$,
	M1: Any two of three (un-simplified) terms correct.A1: All three (un-simplified) terms correct.
	A1: $\frac{1}{4} + \frac{5}{4}x$
	A1: $\frac{75}{16}x^2$
	Note: The terms in C need to be evaluated, so ${}^{-2}C_0(2)^{-2} + {}^{-2}C_1(2)^{-3}(-5x); + {}^{-2}C_2(2)^{-4}(-5x)^2$ without further working is B0M0A0.
	Alternative method for parts (b) and (c)
	$(2+kx) = (2-5x)^2 \left(\frac{1}{2} + \frac{7}{4}x + Ax^2 + \dots\right)$
	$(2 + kx) = (4 - 20x + 25x^2) \left(\frac{1}{2} + \frac{7}{4}x + Ax^2 + \dots\right)$
	$(2+kx) = 2 + (7x - 10x) + \left(4Ax^2 - 35x^2 + \frac{25}{2}x^2\right)$
	Equate x terms: $k = -3$
	Equate x^2 terms: $0 = 4A - 35 + \frac{25}{2} \Rightarrow 4A = \frac{45}{2} \Rightarrow \underline{A = \frac{45}{8}}$
(b)	M1: For $(2 + kx) = (4 \pm \lambda x + 25x^2) \left(\frac{1}{2} + \frac{7}{4}x + Ax^2 + \dots \right)$, where $\lambda \neq 0$
	A1: $k = -3$
(c)	M1: Multiplies out to obtain three x^2 terms/coefficients, equates to 0 and attempts to find A.
	A1: Either $\frac{45}{8}$ or $5\frac{5}{8}$ or 5.625 Note: $\frac{45}{8}x^2$ is A0.

Question Number	Scheme	Marks		
4.	Volume = $\pi \int_{0}^{2} \left(\sqrt{\left(\frac{2x}{3x^2 + 4}\right)} \right)^2 dx$ Use of $V = \underline{\pi \int y^2} dx$.	<u>B1</u>		
	$\pm k \ln (3x^2 + 4) = \frac{1}{2}$			
	$= (\pi) \left[\frac{1}{3} \ln (3x^2 + 4) \right]_0^2 \qquad \qquad$			
	$= (\pi) \left[\left(\frac{1}{3} \ln 16 \right) - \left(\frac{1}{3} \ln 4 \right) \right]$ Substitutes limits of 2 and 0 and subtracts the correct way round.	dM1		
	So Volume = $\frac{1}{3}\pi \ln 4$ or $\frac{2}{3}\pi \ln 2$			
		[5] 5		
	NOTE: π is required for the B1 mark and the final A1 mark. It is not required for the 3 intermed B1: For applying $\pi \int y^2$. Ignore limits and dx. This can be implied by later working,	liate marks.		
	but the pi and $\int \frac{2x}{3x^2 + 4}$ must appear on one line somewhere in the candidate's working.			
	B1 can also be implied by a correct final answer. Note: $\pi(\int y)^2$ would be B0.			
	Working in x			
	M1: For $\pm k \ln(3x^2 + 4)$ or $\pm k \ln\left(x^2 + \frac{4}{3}\right)$ where k is a constant and k can be 1.			
	Note: M0 for $\pm k x \ln(3x^2 + 4)$.			
	Note: M1 can also be given for $\pm k \ln(p(3x^2 + 4))$, where k and p are constants and k can	be 1.		
	A1: For $\frac{1}{3}\ln(3x^2+4)$ or $\frac{1}{3}\ln(\frac{1}{3}(3x^2+4))$ or $\frac{1}{3}\ln(x^2+\frac{4}{3})$ or $\frac{1}{3}\ln(p(3x^2+4))$.			
	You may allow M1 A1 for $\frac{1}{3} \left(\frac{x}{x} \right) \ln (3x^2 + 4)$ or $\frac{1}{3} \left(\frac{2x}{6x} \right) \ln (3x^2 + 4)$			
	dM1: Substitutes limits of 2 and 0 and subtracts the correct way round. Working in decimals is f	ine for dM1.		
	A1: For either $\frac{1}{3}\pi \ln 4$, $\frac{1}{3}\ln 4^{\pi}$, $\frac{2}{3}\pi \ln 2$, $\pi \ln 4^{\frac{1}{3}}$, $\pi \ln 2^{\frac{2}{3}}$, $\frac{1}{3}\pi \ln \left(\frac{16}{4}\right)$, $2\pi \ln \left(\frac{16^{\frac{1}{6}}}{4^{\frac{1}{6}}}\right)$, etc.			
	Note: $\frac{1}{3}\pi(\ln 16 - \ln 4)$ would be A0.			
	<u>Working in u:</u> where $u = 3x^2 + 4$,			
	M1: For $\pm k \ln u$ where k is a constant and k can be 1.			
	Note: M1 can also be given for $\pm k \ln(pu)$, where k and p are constants and k can be 1.			
	A1: For $\frac{1}{3} \ln u$ or $\frac{1}{3} \ln 3u$ or $\frac{1}{3} \ln pu$.			
	dM1: Substitutes limits of 16 and 4 in u or limits of 2 and 0 in x and subtracts the correct way rou A1: As above!	ınd.		
	•	ınd.		

Question Number	Scheme	Marks
5.	$x = 4\sin\left(t + \frac{\pi}{6}\right), y = 3\cos 2t, \qquad 0,, \ t < 2\pi$	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 4\cos\left(t + \frac{\pi}{6}\right), \frac{\mathrm{d}y}{\mathrm{d}t} = -6\sin 2t$	B1 B1
	So, $\frac{dy}{dx} = \frac{-6\sin 2t}{4\cos\left(t + \frac{\pi}{6}\right)}$	B1√ oe
(b)	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies\right\} - 6\sin 2t = 0$	[3] M1 oe
	@ $t = 0$, $x = 4\sin\left(\frac{\pi}{6}\right) = 2$, $y = 3\cos 0 = 3 \rightarrow (2, 3)$	M1
	@ $t = \frac{\pi}{2}, x = 4\sin\left(\frac{2\pi}{3}\right) = \frac{4\sqrt{3}}{2}, y = 3\cos\pi = -3 \rightarrow (2\sqrt{3}, -3)$	
	@ $t = \pi$, $x = 4\sin\left(\frac{7\pi}{6}\right) = -2$, $y = 3\cos 2\pi = 3 \rightarrow (-2, 3)$	
	@ $t = \frac{3\pi}{2}, x = 4\sin\left(\frac{5\pi}{3}\right) = \frac{4(-\sqrt{3})}{2}, y = 3\cos 3\pi = -3 \rightarrow (-2\sqrt{3}, -3)$	A1A1A1
		[5] 8
(a)	B1: Either one of $\frac{dx}{dt} = 4\cos\left(t + \frac{\pi}{6}\right)$ or $\frac{dy}{dt} = -6\sin 2t$. They do not have to be simplified.	
	B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ correct. They do not have to be simplified.	
	Any or both of the first two marks can be implied. Don't worry too much about their notation for the first two B1 marks.	
	B1: Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt} \times \frac{1}{\text{their}\left(\frac{dx}{dt}\right)}$. Note: This is a follow through mar	k.
	Alternative differentiation in part (a)	
	$x = 2\sqrt{3}\sin t + 2\cos t \implies \frac{\mathrm{d}x}{\mathrm{d}t} = 2\sqrt{3}\cos t - 2\sin t$	
	$y = 3(2\cos^2 t - 1) \implies \frac{\mathrm{d}y}{\mathrm{d}t} = 3(-4\cos t\sin t)$	
	or $y = 3\cos^2 t - 3\sin^2 t \implies \frac{dy}{dt} = -6\cos t \sin t - 6\sin t \cos t$	
	or $y = 3(1 - 2\sin^2 t) \implies \frac{dy}{dt} = 3(-4\cos t \sin t)$	

M1: Candidate sets their numerator from part (a) or their $\frac{dy}{dt}$ equal to 0.
Note that their numerator must be a trig function. Ignore $\frac{dx}{dt}$ equal to 0 at this stage.
M1: Candidate substitutes a found value of t , to attempt to find either one of x or y .
The first two method marks can be implied by ONE correct set of coordinates for (x, y) or (y, x) interchanged.
A correct point coming from NO WORKING can be awarded M1M1.
A1: At least TWO sets of coordinates.
A1: At least THREE sets of coordinates.
A1: ONLY FOUR correct sets of coordinates. If there are more than 4 sets of coordinates then award A0. Note: Candidate can use the diagram's symmetry to write down some of their coordinates.
Note: When $x = 4\sin\left(\frac{\pi}{6}\right) = 2$, $y = 3\cos 0 = 3$ is acceptable for a pair of coordinates.
Also it is fine for candidates to display their coordinates on a table of values.
Note: The coordinates must be exact for the accuracy marks. Ie (3.46, -3) or (-3.46, -3) is A0.
Note: $\frac{dy}{dx} = 0 \Rightarrow \sin t = 0$ ONLY is fine for the first M1, and potentially the following M1A1A0A0.
Note: $\frac{dy}{dx} = 0 \Rightarrow \cos t = 0$ ONLY is fine for the first M1 and potentially the following M1A1A0A0.
Note: $\frac{dy}{dx} = 0 \Rightarrow \sin t = 0 \& \cos t = 0$ has the potential to achieve all five marks.
Note: It is possible for a candidate to gain full marks in part (b) if they make sign errors in part (a).
(b) An alternative method for finding the coordinates of the two maximum points.
Some candidates may use $y = 3\cos 2t$ to write down that the y-coordinate of a maximum point is 3.
They will then deduce that $t = 0$ or π and proceed to find the <i>x</i> -coordinate of their maximum point. These
candidates will receive no credit until they attempt to find one of the x-coordinates for the maximum point.
M1M1: Candidate states $y = 3$ and attempts to substitute $t = 0$ or π into $x = 4\sin\left(t + \frac{\pi}{6}\right)$.
M1M1 can be implied by candidate stating either $(2, 3)$ or $(2, -3)$.
Note: these marks can only be awarded together for a candidate using this method.
A1: For both (2, 3) or (-2, 3).
A0A0 : Candidate cannot achieve the final two marks by using this method. They can, however, achieve these marks by subsequently solving their numerator equal to 0.

Question Number	Scheme	Marks
6. (a)	0.73508	B1 cao
(b)	Area $\approx \frac{1}{2} \times \frac{\pi}{8}$; $\times [0 + 2(\text{their } 0.73508 + 1.17157 + 1.02280) + 0]$	[1] B1 <u>M1</u>
	$=\frac{\pi}{16} \times 5.8589 = 1.150392325 = 1.1504 \ (4 \text{ dp}) \qquad \text{awrt } 1.1504$	A1 [3]
(c)	$\left\{ u = 1 + \cos x \right\} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = -\sin x$	<u>B1</u>
	$\left\{\int \frac{2\sin 2x}{(1+\cos x)} \mathrm{d}x = \right\} \int \frac{2(2\sin x \cos x)}{(1+\cos x)} \mathrm{d}x \qquad \qquad$	B1
	$= \int \frac{4(u-1)}{u} \cdot (-1) \mathrm{d}u \left\{ = 4 \int \frac{(1-u)}{u} \mathrm{d}u \right\}$	M1
	$= 4 \int \left(\frac{1}{u} - 1\right) \mathrm{d}u = 4 \left(\ln u - u\right) + c$	dM1
	$= 4\ln(1 + \cos x) - 4(1 + \cos x) + c = 4\ln(1 + \cos x) - 4\cos x + k$ AG	A1 cso [5]
(d)	$= \left[4\ln\left(1 + \cos\frac{\pi}{2}\right) - 4\cos\frac{\pi}{2} \right] - \left[4\ln\left(1 + \cos\theta\right) - 4\cos\theta \right] $ Applying limits $x = \frac{\pi}{2}$ and $x = 0$ either way round.	M1
	$= [4\ln 1 - 0] - [4\ln 2 - 4]$	
	$ \pm 4(1 - \ln 2) \text{ or} $ = 4 - 4ln2 {= 1.227411278} $ \pm (4 - 4\ln 2) \text{ or awrt } \pm 1.2, $ <i>however</i> found.	A1
	Error = $ (4 - 4\ln 2) - 1.1504 $ awrt ± 0.077 = 0.0770112776 = 0.077 (2sf)or awrt $\pm 6.3(\%)$	A1 cso [3]
(a)	B1: 0.73508 correct answer only. Look for this on the table or in the candidate's working.	12
	B1 : Outside brackets $\frac{1}{2} \times \frac{\pi}{8}$ or $\frac{\pi}{16}$ or awrt 0.196	
(b)		
	M1: For structure of trapezium rule $[$ $];$ (0 can be implied).	
	A1: anything that rounds to 1.1504 Bracketing mistake: Unless the final answer implies that the calculation has been done correct	etly
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8} + 2$ (their 0.73508 + 1.17157 + 1.02280) (nb: answer of 6.0552).	
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8}$ (0 + 0) + 2(their 0.73508 + 1.17157 + 1.02280) (nb: answer of 5.8589)	9).
	Alternative method for part (b): Adding individual trapezia $\pi \begin{bmatrix} 0 + 0.72508 & 0.72508 + 1.17157 & 1.17157 + 1.02280 & 1.02280 + 0.72508 \\ 0 + 0.72508 & 0.72508 + 1.17157 & 1.17157 + 1.02280 & 1.02280 \\ 0 + 0.72508 & 0.72508 + 1.17157 & 1.17157 \\ 0 + 0.72508 & 0.72508 + 1.17157 & 1.17157 \\ 0 + 0.72508 & 0.72508 + 1.17157 & 1.17157 \\ 0 + 0.72508 & 0.72508 + 1.17157 & 1.17157 \\ 0 + 0.72508 & 0.72508 & 0.72508 \\$	
	Area $\approx \frac{\pi}{8} \times \left[\frac{0 + 0.73508}{2} + \frac{0.73508 + 1.17157}{2} + \frac{1.17157 + 1.02280}{2} + \frac{1.02280 + 0}{2} \right] = 1.15$	50392325
	B1: $\frac{\pi}{8}$ and a divisor of 2 on all terms inside brackets.	
	M1: One of first and last ordinates, two of the middle ordinates inside brackets ignoring the 2. A1: anything that rounds to 1.1504	

B1: $\frac{du}{dx} = -\sin x$ or $du = -\sin x \, dx$ or $\frac{dx}{du} = \frac{1}{-\sin x}$ **6.** (c) **B1:** For seeing, applying or implying $\sin 2x = 2\sin x \cos x$. **M1:** After applying substitution candidate achieves $\pm k \int \frac{(u-1)}{u} (du)$ or $\pm k \int \frac{(1-u)}{u} (du)$. Allow M1 for "invisible" brackets here, eg: $\pm \int \frac{(\lambda u - 1)}{u} (du)$ or $\pm \int \frac{(-\lambda + u)}{u} (du)$, where λ is a positive constant. **dM1:** An attempt to divide through each term by u and $\pm k \int \left(\frac{1}{u} - 1\right) du \rightarrow \pm k (\ln u - u)$ with/without + c. Note that this mark is dependent on the previous M1 mark being awarded. Alternative method: Candidate can also gain this mark for applying integration by parts followed by a correct method for integrating $\ln u$. (See below). A1: Correctly combines their + c and "-4" together to give $4\ln(1 + \cos x) - 4\cos x + k$ As a minimum candidate must write either $4\ln(1 + \cos x) - 4(1 + \cos x) + c \rightarrow 4\ln(1 + \cos x) - 4\cos x + k$ or $4\ln(1 + \cos x) - 4(1 + \cos x) + k \rightarrow 4\ln(1 + \cos x) - 4\cos x + k$ Note: that this mark is also for a correct solution only. Note: those candidates who attempt to find the value of k will usually achieve A0. (d) M1: Substitutes limits of $x = \frac{\pi}{2}$ and x = 0 into $\{4\ln(1 + \cos x) - 4\cos x\}$ or their answer from part (c) and subtracts the either way round. Note that: $\left| 4\ln\left(1 + \cos\frac{\pi}{2}\right) - 4\cos\frac{\pi}{2} \right| - [0]$ is M0. A1: $4(1-\ln 2)$ or $4-4\ln 2$ or awrt 1.2, however found. This mark can be implied by the final answer of either awrt ± 0.077 or awrt ± 6.3 A1: For either awrt ± 0.077 or awrt ± 6.3 (for percentage error). Note this mark is for a correct solution only. Therefore if there if a candidate substitutes limits the incorrect way round and final achieves (usually fudges) the final correct answer then this mark can be withheld. Note that awrt 6.7 (for percentage error) is A0. Alternative method for dM1 in part (c) $\int \frac{(1-u)}{u} \, \mathrm{d}u = \left((1-u)\ln u - \int -\ln u \, \mathrm{d}u \right) = \left((1-u)\ln u + u\ln u - \int \frac{u}{u} \, \mathrm{d}u \right) = \left((1-u)\ln u + u\ln u - u \right)$ or $\int \frac{(u-1)}{u} du = \left((u-1)\ln u - \int \ln u \, du \right) = \left((u-1)\ln u - \left(u\ln u - \int \frac{u}{u} \, du \right) \right) = \left((u-1)\ln u - u\ln u + u \right)$ So **dM1** is for $\int \frac{(1-u)}{u} du$ going to $((1-u)\ln u + u\ln u - u)$ or $((u-1)\ln u - u\ln u + u)$ oe. Alternative method for part (d) **M1A1** for $\begin{cases} 4 \int_{-1}^{1} \left(\frac{1}{u} - 1\right) du = \begin{cases} 4 \left[\ln u - u\right]_{2}^{1} = 4 \left[(\ln 1 - 1) - (\ln 2 - 2)\right] = 4(1 - \ln 2) \end{cases}$ <u>Alternative method for part (d):</u> Using an extra constant λ from their integration. $\left| 4\ln\left(1+\cos\frac{\pi}{2}\right) - 4\cos\frac{\pi}{2} + \lambda \right| - \left[4\ln\left(1+\cos\theta\right) - 4\cos\theta + \lambda\right]$ λ is usually -4, but can be a value of k that the candidate has found in part (d). Note: The extra constant λ should cancel out and so the candidate can gain all three marks using this method, even the final A1 cso.

Question Number	Scheme		Marks
7.	$\overrightarrow{OA} = 2\mathbf{i} - \mathbf{j} + 5\mathbf{k}$, $\overrightarrow{OB} = 5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}$, $\left\{\overrightarrow{OC} = 2\mathbf{i} + 4\mathbf{j} + 9\mathbf{k}\right\}$ &	$\overrightarrow{OD} = -\mathbf{i} + \mathbf{j} + 4\mathbf{k}$	
(a)	$\overrightarrow{AB} = = \pm \left((5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}) - (2\mathbf{i} - \mathbf{j} + 5\mathbf{k}) \right); = 3\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$		M1; A1
			[2]
(b)	$l: \mathbf{r} = \begin{pmatrix} 2\\-1\\5 \end{pmatrix} + \lambda \begin{pmatrix} 3\\3\\5 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 5\\2\\10 \end{pmatrix} + \lambda \begin{pmatrix} 3\\3\\5 \end{pmatrix}$	See notes	M1 A1ft
	DC		[2]
	Let $\theta = B\hat{A}D$		
		Let d be the shortest	
		distance from <i>C</i> to <i>l</i> .	
	$A \qquad \sqrt{43} \qquad B \qquad l$		
	$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = \begin{pmatrix} -1\\1\\-1\\-5 \end{pmatrix} - \begin{pmatrix} 2\\-1\\-5\\-2\\-1 \end{pmatrix} = \begin{pmatrix} -3\\2\\-2\\-1\\-2\\-1 \end{pmatrix} \text{ or } \overrightarrow{DA} = \begin{pmatrix} 3\\-2\\-2\\-1\\-2\\-1 \end{pmatrix}$		
(c)	$AD = OD - OA = \begin{bmatrix} 1 \\ 4 \end{bmatrix} - \begin{bmatrix} -1 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \text{ or } DA = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$		M1
	(3) (-3)	Applies dot product	
	$\cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AD}}{\left \overrightarrow{AB} \right \cdot \left \overrightarrow{AD} \right } = \frac{\begin{pmatrix} 3\\ 3\\ 5 \end{pmatrix} \cdot \begin{pmatrix} -3\\ 2\\ -1 \end{pmatrix}}{\sqrt{(3)^2 + (3)^2 + (5)^2} \cdot \sqrt{(-3)^2 + (2)^2 + (-1)^2}}$	formula between their $(\overline{AB} \text{ or } \overline{BA})$	M1
	$\cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AD}}{ \overrightarrow{AB} \overrightarrow{AD} } = \frac{(5)(-1)}{(-1)^2}$	their $(\overline{AB} \text{ or } \overline{BA})$	M1
		and their $(\overline{AD} \text{ or } \overline{DA})$.	
	$\cos \theta = \pm \left(\frac{-9 + 6 - 5}{\sqrt{(3)^2 + (3)^2 + (5)^2}} \sqrt{(-3)^2 + (2)^2 + (-1)^2} \right)$	Correct followed through	A1
		expression or equation .	
	$\cos \theta = \frac{-8}{\sqrt{43}.\sqrt{14}} \Rightarrow \theta = 109.029544 = 109 \text{ (nearest °)}$	awrt 109	A1 cso AG
			[4]
(d)	$\overrightarrow{OC} = \overrightarrow{OD} + \overrightarrow{DC} = \overrightarrow{OD} + \overrightarrow{AB} = (-\mathbf{i} + \mathbf{j} + 4\mathbf{k}) + (3\mathbf{i} + 3\mathbf{j} + 5\mathbf{k})$		M1
	$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} = \overrightarrow{OB} + \overrightarrow{AD} = (5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}) + (-3\mathbf{i} + 2\mathbf{j} - \mathbf{k})$		
	So, $\overline{OC} = 2\mathbf{i} + 4\mathbf{j} + 9\mathbf{k}$		A1 [2]
(e)	Area $ABCD = (\frac{1}{2}(\sqrt{43})(\sqrt{14})\sin 109^\circ); \times 2 = 23.19894905$	awrt 23.2	[2] M1; dM1 A1
	(~)		[3]
(f)	$\frac{d}{\sqrt{14}} = \sin 71$ or $\sqrt{43} d = 23.19894905$		M1
	$\frac{d}{\sqrt{14}} = \sin 71 \text{or} \sqrt{43} d = 23.19894905$ $\therefore \ d = \sqrt{14} \sin 71^{\circ} = 3.537806563$	awrt 3.54	A1
		4	[2]
			15

7. (a) M1: Finding the difference between \overline{OB} and \overline{OA} . Can be implied by two out of three components correct in $3\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ or $-3\mathbf{i} - 3\mathbf{j} - 5\mathbf{k}$ A1: 3i + 3j + 5kM1: An expression of the form (3 component vector) $\pm \lambda$ (3 component vector) (b) A1ft: $\mathbf{r} = \overrightarrow{OA} + \lambda (\text{their } \pm \overrightarrow{AB}) \text{ or } \mathbf{r} = \overrightarrow{OB} + \lambda (\text{their } \pm \overrightarrow{AB}).$ **Note:** Candidate must begin writing their line as $\mathbf{r} = \text{ or } l = \dots \text{ or } \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots$ So, Line = ... would be A0. (c) M1: An attempt to find either the vector \overrightarrow{AD} or \overrightarrow{DA} . Can be implied by two out of three components correct in $-3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ or $3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$, respectively. M1: Applies dot product formula between their $(\overline{AB} \text{ or } \overline{BA})$ and their $(\overline{AD} \text{ or } \overline{DA})$. A1ft: Correct followed through expression or equation. The dot product must be correctly followed through correctly and the square roots although they can be un-simplified must be followed through correctly. A1: Obtains an angle of awrt 109 by correct solution only. Award the final A1 mark if candidate achieves awrt 109 by either taking the dot product between: $\begin{pmatrix} 3\\3\\5 \end{pmatrix} \text{ and } \begin{pmatrix} -3\\2\\-1 \end{pmatrix} \text{ or (ii) } \begin{pmatrix} -3\\-3\\-5 \end{pmatrix} \text{ and } \begin{pmatrix} 3\\-2\\1 \end{pmatrix}. \text{ Ignore if any of these vectors are labelled incorrectly.}$ (i) Award A0, cso for those candidates who take the dot product between: (iii) $\begin{pmatrix} -3 \\ -3 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix}$ or (iv) $\begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$. They will usually find awrt 71 and apply 180 - awrt 71 to give awrt 109. If these candidates give a convincing detailed explanation which must include reference to the direction of their vectors then this can be given A1 cso. If still in doubt, here, send to review. (d) M1: Applies either \overline{OD} + their \overline{AB} or \overline{OB} + their \overline{AD} . This mark can be implied by two out of three correctly followed through components in their OD. **A1:** For 2i + 4j + 9k. M1: $\frac{1}{2}$ (their AB) (their CB) sin (their 109° or 71° from (b)). Awrt 11.6 will usually imply this mark. (e) **dM1:** Multiplies this by 2 for the parallelogram. Can be implied. Note: $\frac{1}{2}((\text{their } AB + \text{their } AB))(\text{their } CB)\sin(\text{their } 109^{\circ} \text{ or } 71^{\circ} \text{ from (b)})$ A1: awrt 23.2 (f) M1: $\frac{d}{\text{their } AD} = \sin(\text{their } 109^{\circ} \text{ or } 71^{\circ} \text{ from (b)}) \text{ or (their } AB) d = (\text{their } \text{Area } ABCD)$ Award M0 for (their AB) in part (f), if the area of their parallelogram in part (e) is (their AB)(their CB). Award M0 for $\frac{d}{\text{their }\sqrt{43}} = \sin 71$ or $(\text{their }\sqrt{14})d = 23.19894905...$ A1: awrt 3.54 Note: Some candidates will use their answer to part (f) in order to answer part (e).

7. Alternative method for part (c): Applying the cosine rule: $\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = \begin{pmatrix} -1\\1\\4 \end{pmatrix} - \begin{pmatrix} 2\\-1\\5 \end{pmatrix} = \begin{pmatrix} -3\\2\\-1 \end{pmatrix} \text{ or } \overrightarrow{DA} = \begin{pmatrix} 3\\-2\\1 \end{pmatrix}$ M1: as above. $\overrightarrow{DB} = \overrightarrow{OD} - \overrightarrow{OA} = \begin{pmatrix} 5\\2\\10 \end{pmatrix} - \begin{pmatrix} -1\\1\\4 \end{pmatrix} = \begin{pmatrix} 6\\1\\6 \end{pmatrix} \text{ or } \overrightarrow{BD} = \begin{pmatrix} -6\\-1\\-6 \end{pmatrix}$ So $\left|\overline{AB}\right| = \sqrt{43}$, $\left|\overline{AD}\right| = \sqrt{14}$ and $\left|\overline{DB}\right| = \sqrt{73}$ M1: Cosine rule structure of $\cos\theta = \frac{a^2 + b^2 - c^2}{2ab}$ assigned $\cos \theta = \frac{\left(\sqrt{43}\right)^2 + \left(\sqrt{14}\right)^2 - \left(\sqrt{73}\right)^2}{2\sqrt{43}\sqrt{14}} \qquad \text{each of } \left|\overline{AB}\right|, \left|\overline{AD}\right| \text{ and } \left|\overline{DB}\right| \text{ in any order as their } a, b \text{ and } c.$ A1: Correct application of cosine rule. $\left\{\cos\theta = \frac{-16}{2\sqrt{43}\sqrt{14}} \Rightarrow \theta = 109.029544...\right\} = 109 \text{ (nearest °)} \quad \text{A1: awrt 109 (no errors seen). AG}$ Alternative method for part (d): $\frac{Auernan}{\overrightarrow{OE}} = \begin{pmatrix} 2\\ -1\\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 3\\ 3\\ 5 \end{pmatrix}$ $\overrightarrow{DE} = \begin{pmatrix} 2+3\lambda \\ -1+3\lambda \\ 5+5\lambda \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 3+3\lambda \\ -2+3\lambda \\ 1+5\lambda \end{pmatrix}$ $\overrightarrow{DE} \bullet \overrightarrow{AB} = 0 \implies \begin{pmatrix} 3+3\lambda \\ -2+3\lambda \\ 1+5\lambda \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 3 \\ 5 \\ 5 \end{bmatrix} = 0$ M1: Takes the dot product between \overrightarrow{DE} and \overrightarrow{AB} and progresses to find a value of λ $9 + 9\lambda - 6 + 9\lambda + 5 + 3\lambda = 0 \implies \lambda = -\frac{8}{43}$ $\overrightarrow{DE} = \begin{pmatrix} 2+3\lambda \\ -1+3\lambda \\ 5+5\lambda \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} \frac{103}{43} \\ -\frac{110}{43} \\ \frac{3}{3} \end{pmatrix}$ **dM1:** Uses their value of λ to find \overline{DE} Length DE = 3.537806563A1: awrt 3.54

Question Number	Scheme	Marks	
8. (a)	1 = A(5 - P) + BP Can be implied.	M1	
	$A = \frac{1}{5}, B = \frac{1}{5}$ Either one.	A1	
	giving $\frac{\frac{1}{5}}{P} + \frac{\frac{1}{5}}{(5-P)}$ See notes.	A1 cao, aef	
		[3]	
(b)	$\int \frac{1}{P(5-P)} \mathrm{d}P = \int \frac{1}{15} \mathrm{d}t$	B1	
	$\frac{1}{5}\ln P - \frac{1}{5}\ln(5-P) = \frac{1}{15}t \ (+c)$	M1* A1ft	
	${t = 0, P = 1 \Rightarrow} \frac{1}{5}\ln 1 - \frac{1}{5}\ln(4) = 0 + c {\Rightarrow c = -\frac{1}{5}\ln 4}$	dM1*	
	eg: $\frac{1}{5}\ln\left(\frac{P}{5-P}\right) = \frac{1}{15}t - \frac{1}{5}\ln 4$ Using any of the subtraction (or addition) laws for logarithms CORRECTLY	dM1*	
	$\ln\left(\frac{4P}{5-P}\right) = \frac{1}{3}t$ eg: $\frac{4P}{5-P} = e^{\frac{1}{3}t}$ or eg: $\frac{5-P}{4P} = e^{-\frac{1}{3}t}$ Eliminate ln's correctly.	dM1*	
	gives $4P = 5e^{\frac{1}{3}t} - Pe^{\frac{1}{3}t} \implies P(4 + e^{\frac{1}{3}t}) = 5e^{\frac{1}{3}t}$ $P = \frac{5e^{\frac{1}{3}t}}{(4 + e^{\frac{1}{3}t})} \left\{ \frac{(\div e^{\frac{1}{3}t})}{(\div e^{\frac{1}{3}t})} \right\}$ Make <i>P</i> the subject.	dM1*	
	$P = \frac{5}{(1+4e^{-\frac{1}{3}t})}$ or $P = \frac{25}{(5+20e^{-\frac{1}{3}t})}$ etc.	A1	
	$1 + 4e^{-\frac{1}{2}t} > 1 \rightarrow D < 5$ So nonverting compations of 5000	[8] B1	
(c)	$1 + 4e^{-\frac{1}{3}t} > 1 \implies P < 5$. So population cannot exceed 5000.	[1]	
(a)	M1: Forming a correct identity. For example, $1 = A(5 - P) + BP$. Note <i>A</i> and <i>B</i> not referred	to in question.	
	A1: Either one of $A = \frac{1}{5}$ or $B = \frac{1}{5}$.		
	A1: $\frac{\frac{1}{5}}{P} + \frac{\frac{1}{5}}{(5-P)}$ or any equivalent form, eg: $\frac{1}{5P} + \frac{1}{25-5P}$, etc. Ignore subsequent works	ng.	
	This answer must be stated in part (a) only.		
	A1 can also be given for a candidate who finds both $A = \frac{1}{5}$ and $B = \frac{1}{5}$ and $\frac{A}{P} + \frac{B}{5-P}$ is seen in their		
	working.		
	Candidate can use 'cover-up' rule to write down $\frac{\frac{1}{5}}{P} + \frac{\frac{1}{5}}{(5-P)}$, as so gain all three marks.		
	Candidate cannot gain the marks for part (a) in part (b).		

B1: Separates variables as shown. dP and dt should be in the correct positions, though this mark can be 8. (b) implied by later working. Ignore the integral signs. M1*: Both $\pm \lambda \ln P$ and $\pm \mu \ln(\pm 5 \pm P)$, where λ and μ are constants. Or $\pm \lambda \ln mP$ and $\pm \mu \ln(n(\pm 5 \pm P))$, where λ , μ , *m* and *n* are constants. A1ft: Correct follow through integration of both sides from their $\int \frac{\lambda}{P} + \frac{\mu}{(5-P)} dP = \int K dt$ with or without +c**dM1*:** Use of t = 0 and P = 1 in an integrated equation containing c dM1*: Using ANY of the subtraction (or addition) laws for logarithms CORRECTLY. **dM1*:** Apply logarithms (or take exponentials) to eliminate ln's CORRECTLY from their equation. dM1*: A full ACCEPTABLE method of rearranging to make P the subject. (See below for examples!) A1: $P = \frac{5}{(1+4e^{-\frac{1}{3}t})} \{ \text{where } a = 5, b = 1, c = 4 \}.$ Also allow any "integer" multiples of this expression. For example: $P = \frac{25}{(5+20e^{-\frac{1}{3}t})}$ Note: If the first method mark (M1*) is not awarded then the candidate cannot gain any of the six remaining marks for this part of the question. Note: $\int \frac{1}{P(5-P)} dP = \int 15 dt \Rightarrow \int \frac{1}{5} + \frac{1}{(5-P)} dP = \int 15 dt \Rightarrow \ln P - \ln(5-P) = 15t$ is B0M1A1ft. dM1* for making P the subject Note there are three type of manipulations here which are considered acceptable to make P the subject. (1) M1 for $\frac{P}{5-P} = e^{\frac{1}{3}t} \Rightarrow P = 5e^{\frac{1}{3}t} - Pe^{\frac{1}{3}t} \Rightarrow P(1+e^{\frac{1}{3}t}) = 5e^{\frac{1}{3}t} \Rightarrow P = \frac{5}{(1+e^{-\frac{1}{3}t})}$ (2) M1 for $\frac{P}{5-P} = e^{\frac{1}{3}t} \Rightarrow \frac{5-P}{P} = e^{\frac{1}{3}t} \Rightarrow \frac{5}{P} - 1 = e^{\frac{1}{3}t} \Rightarrow \frac{5}{P} = e^{\frac{1}{3}t} + 1 \Rightarrow P = \frac{5}{(1+e^{\frac{1}{3}t})}$ (3) M1 for $P(5-P) = 4e^{\frac{1}{3}t} \Rightarrow P^2 - 5P = -4e^{\frac{1}{3}t} \Rightarrow \left(P - \frac{5}{2}\right)^2 - \frac{25}{4} = -4e^{\frac{1}{3}t}$ leading to $P = \dots$ Note: The incorrect manipulation of $\frac{P}{5-P} = \frac{P}{5} - 1$ or equivalent is awarded this dM0*. Note: $(P) - (5 - P) = e^{\frac{1}{3}t} \implies 2P - 5 = \frac{1}{3}t$ leading to P = ... or equivalent is awarded this dM0* **B1:** $1 + 4e^{-\frac{1}{3}t} > 1$ and P < 5 and a conclusion relating population (or even P) or meerkats to 5000. (c) For $P = \frac{25}{(5+20e^{-\frac{1}{3}t})}$, B1 can be awarded for $5+20e^{-\frac{1}{3}t} > 5$ and P < 5 and a conclusion relating population (or even P) or meerkats to 5000. B1 can only be obtained if candidates have correct values of a and b in their $P = \frac{a}{(b + ce^{-\frac{1}{3}t})}$. Award B0 for: As $t \to \infty$, $e^{-\frac{1}{3}t} \to 0$. So $P \to \frac{5}{(1+0)} = 5$, so population cannot exceed 5000, **unless** the candidate also proves that $P = \frac{5}{(1 + 4e^{-\frac{1}{3}t})}$ oe. is an increasing function. If unsure here, then send to review!

8.	Alternative method for part (b)	
	B1M1*A1: as before for $\frac{1}{5}\ln P - \frac{1}{5}\ln(5-P) = \frac{1}{15}t (+c)$	
	Award 3 rd M1for $\ln\left(\frac{P}{5-P}\right) = \frac{1}{3}t + c$	
	Award 4 th M1 for $\frac{P}{5-P} = A e^{\frac{1}{3}t}$	
	Award 2 nd M1 for $t = 0, P = 1 \implies \frac{1}{5-1} = Ae^0 \left\{ \Rightarrow A = \frac{1}{4} \right\}$	
	$\frac{P}{5-P} = \frac{1}{4}e^{\frac{1}{3}t}$	
	then award the final M1A1 in the same way.	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA030313 January 2012

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

